Citation: Wenjing Zhu, Qi Li, Yong Yin, Huanchun Chen, Youhui Si, Bibo Zhu, Shengbo Cao, Zikai Zhao, Jing Ye. Ferroptosis contributes to JEV-induced neuronal damage and neuroinflammation .VIROLOGICA SINICA, 2024, 39(1) : 144-155.  http://dx.doi.org/10.1016/j.virs.2023.12.004

Ferroptosis contributes to JEV-induced neuronal damage and neuroinflammation

  • Ferroptosis is a newly discovered prototype of programmed cell death (PCD) driven by iron-dependent phospholipid peroxidation accumulation, and it has been linked to numerous organ injuries and degenerative pathologies. Although studies have shown that a variety of cell death processes contribute to JEV-induced neuroinflammation and neuronal injury, there is currently limited research on the specific involvement of ferroptosis. In this study, we explored the neuronal ferroptosis induced by JEV infection in vitro and in vivo. Our results indicated that JEV infection induces neuronal ferroptosis through inhibiting the function of the antioxidant system mediated by glutathione (GSH)/glutathione peroxidase 4 (GPX4), as well as by promoting lipid peroxidation mediated by yes-associated protein 1 (YAP1)/long-chain acyl-CoA synthetase 4 (ACSL4). Further analyses revealed that JEV E and prM proteins function as agonists, inducing ferroptosis. Moreover, we found that treatment with a ferroptosis inhibitor in JEV-infected mice reduces the viral titers and inflammation in the mouse brains, ultimately improving the survival rate of infected mice. In conclusion, our study unveils a critical role of ferroptosis in the pathogenesis of JEV, providing new ideas for the prevention and treatment of viral encephalitis.

  • 加载中
  • 10.1016j.virs.2023.12.004-ESM.docx
    1. Ashraf, U., Ding, Z., Deng, S., Ye, J., Cao, S.,Chen, Z., 2021. Pathogenicity and virulence of Japanese encephalitis virus: Neuroinflammation and neuronal cell damage. Virulence, 12, 968-980.

    2. Bannai, S.,Kitamura, E., 1980. Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem, 255, 2372-2376.

    3. Bouchaoui, H., Mahoney-Sanchez, L., Garcon, G., Berdeaux, O., Alleman, L.Y., Devos, D., Duce, J.A.,Devedjian, J.C., 2022. ACSL4 and the lipoxygenases 15/15B are pivotal for ferroptosis induced by iron and PUFA dyshomeostasis in dopaminergic neurons. Free Radic Biol Med, 195, 145-157.

    4. Cao, J.Y.,Dixon, S.J., 2016. Mechanisms of ferroptosis. Cell Mol Life Sci, 73, 2195-2209.

    5. Cao, Y., Li, Y., He, C., Yan, F., Li, J.R., Xu, H.Z., Zhuang, J.F., Zhou, H., Peng, Y.C., Fu, X.J., Lu, X.Y., Yao, Y., Wei, Y.Y., Tong, Y., Zhou, Y.F.,Wang, L., 2021. Selective Ferroptosis Inhibitor Liproxstatin-1 Attenuates Neurological Deficits and Neuroinflammation After Subarachnoid Hemorrhage. Neurosci Bull, 37, 535-549.

    6. Chauhan, P.S., Misra, U.K.,Kalita, J., 2017. A study of glutamate levels, NR1, NR2A, NR2B receptors and oxidative stress in rat model of Japanese encephalitis. Physiol Behav, 171, 256-267.

    7. Chen, C.J., Ou, Y.C., Lin, S.Y., Raung, S.L., Liao, S.L., Lai, C.Y., Chen, S.Y.,Chen, J.H., 2010. Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J Gen Virol, 91, 1028-1037.

    8. Chen, C.T., Green, J.T., Orr, S.K.,Bazinet, R.P., 2008. Regulation of brain polyunsaturated fatty acid uptake and turnover. Prostaglandins Leukot Essent Fatty Acids, 79, 85-91.

    9. Chen, J., Li, X., Ge, C., Min, J.,Wang, F., 2022. The multifaceted role of ferroptosis in liver disease. Cell Death Differ, 29, 467-480.

    10. Chen, X., Li, J., Kang, R., Klionsky, D.J.,Tang, D., 2021. Ferroptosis: machinery and regulation. Autophagy, 17, 2054-2081.

    11. Cottini, F., Hideshima, T., Xu, C., Sattler, M., Dori, M., Agnelli, L., Ten Hacken, E., Bertilaccio, M.T., Antonini, E., Neri, A., Ponzoni, M., Marcatti, M., Richardson, P.G., Carrasco, R., Kimmelman, A.C., Wong, K.K., Caligaris-Cappio, F., Blandino, G., Kuehl, W.M., Anderson, K.C.,Tonon, G., 2014. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med, 20, 599-606.

    12. Dai, C., Chen, X., Li, J., Comish, P., Kang, R.,Tang, D., 2020. Transcription factors in ferroptotic cell death. Cancer Gene Ther, 27, 645-656.

    13. Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S., Morrison, B., 3rd,Stockwell, B.R., 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149, 1060-1072.

    14. Doll, S.,Conrad, M., 2017. Iron and ferroptosis: A still ill-defined liaison. IUBMB Life, 69, 423-434.

    15. Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., Irmler, M., Beckers, J., Aichler, M., Walch, A., Prokisch, H., Trumbach, D., Mao, G., Qu, F., Bayir, H., Fullekrug, J., Scheel, C.H., Wurst, W., Schick, J.A., Kagan, V.E., Angeli, J.P.,Conrad, M., 2017. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol, 13, 91-98.

    16. Forcina, G.C.,Dixon, S.J., 2019. GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics, 19, e1800311.

    17. Friedmann Angeli, J.P., Schneider, M., Proneth, B., Tyurina, Y.Y., Tyurin, V.A., Hammond, V.J., Herbach, N., Aichler, M., Walch, A., Eggenhofer, E., Basavarajappa, D., Radmark, O., Kobayashi, S., Seibt, T., Beck, H., Neff, F., Esposito, I., Wanke, R., Forster, H., Yefremova, O., Heinrichmeyer, M., Bornkamm, G.W., Geissler, E.K., Thomas, S.B., Stockwell, B.R., O'donnell, V.B., Kagan, V.E., Schick, J.A.,Conrad, M., 2014. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol, 16, 1180-1191.

    18. Ghoshal, A., Das, S., Ghosh, S., Mishra, M.K., Sharma, V., Koli, P., Sen, E.,Basu, A., 2007. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia, 55, 483-496.

    19. He, S., Li, R., Peng, Y., Wang, Z., Huang, J., Meng, H., Min, J., Wang, F.,Ma, Q., 2022. ACSL4 contributes to ferroptosis-mediated rhabdomyolysis in exertional heat stroke. J Cachexia Sarcopenia Muscle, 13, 1717-1730.

    20. Kagan, V.E., Mao, G., Qu, F., Angeli, J.P., Doll, S., Croix, C.S., Dar, H.H., Liu, B., Tyurin, V.A., Ritov, V.B., Kapralov, A.A., Amoscato, A.A., Jiang, J., Anthonymuthu, T., Mohammadyani, D., Yang, Q., Proneth, B., Klein-Seetharaman, J., Watkins, S., Bahar, I., Greenberger, J., Mallampalli, R.K., Stockwell, B.R., Tyurina, Y.Y., Conrad, M.,Bayir, H., 2017. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol, 13, 81-90.

    21. Kagan, V.E., Tyurina, Y.Y., Sun, W.Y., Vlasova, Ii, Dar, H., Tyurin, V.A., Amoscato, A.A., Mallampalli, R., Van Der Wel, P.C.A., He, R.R., Shvedova, A.A., Gabrilovich, D.I.,Bayir, H., 2020. Redox phospholipidomics of enzymatically generated oxygenated phospholipids as specific signals of programmed cell death. Free Radic Biol Med, 147, 231-241.

    22. Kan, X.J., Yin, Y.C., Song, C.P., Tan, L., Qiu, X.S., Liao, Y., Liu, W.W., Meng, S.S., Sun, Y.J.,Ding, C., 2021. Newcastle-disease-virus-induced ferroptosis through nutrient deprivation and ferritinophagy in tumor cells. Iscience, 24.

    23. Khare, B.,Kuhn, R.J., 2022. The Japanese Encephalitis Antigenic Complex Viruses: From Structure to Immunity. Viruses, 14.

    24. Kumar, S., Misra, U.K., Kalita, J., Khanna, V.K.,Khan, M.Y., 2009. Imbalance in oxidant/antioxidant system in different brain regions of rat after the infection of Japanese encephalitis virus. Neurochemistry International, 55, 648-654.

    25. Lee, H., Zandkarimi, F., Zhang, Y., Meena, J.K., Kim, J., Zhuang, L., Tyagi, S., Ma, L., Westbrook, T.F., Steinberg, G.R., Nakada, D., Stockwell, B.R.,Gan, B., 2020. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol, 22, 225-234.

    26. Li, F., Wang, Y., Yu, L., Cao, S., Wang, K., Yuan, J., Wang, C., Wang, K., Cui, M.,Fu, Z.F., 2015. Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection. J Virol, 89, 5602-5614.

    27. Li, J., Cao, F., Yin, H.L., Huang, Z.J., Lin, Z.T., Mao, N., Sun, B.,Wang, G., 2020. Ferroptosis: past, present and future. Cell Death Dis, 11, 88.

    28. Li, Y., Feng, D., Wang, Z., Zhao, Y., Sun, R., Tian, D., Liu, D., Zhang, F., Ning, S., Yao, J.,Tian, X., 2019. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ, 26, 2284-2299.

    29. Liu, G.Z., Xu, X.W., Tao, S.H., Gao, M.J.,Hou, Z.H., 2021. HBx facilitates ferroptosis in acute liver failure via EZH2 mediated SLC7A11 suppression. J Biomed Sci, 28, 67.

    30. Maiorino, M., Conrad, M.,Ursini, F., 2018. GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxid Redox Signal, 29, 61-74.

    31. Mandal, P.K., Seiler, A., Perisic, T., Kolle, P., Banjac Canak, A., Forster, H., Weiss, N., Kremmer, E., Lieberman, M.W., Bannai, S., Kuhlencordt, P., Sato, H., Bornkamm, G.W.,Conrad, M., 2010. System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J Biol Chem, 285, 22244-22253.

    32. Olagnier, D., Peri, S., Steel, C., Van Montfoort, N., Chiang, C., Beljanski, V., Slifker, M., He, Z., Nichols, C.N., Lin, R., Balachandran, S.,Hiscott, J., 2014. Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog, 10, e1004566.

    33. Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., Fulda, S., Gascon, S., Hatzios, S.K., Kagan, V.E., Noel, K., Jiang, X., Linkermann, A., Murphy, M.E., Overholtzer, M., Oyagi, A., Pagnussat, G.C., Park, J., Ran, Q., Rosenfeld, C.S., Salnikow, K., Tang, D., Torti, F.M., Torti, S.V., Toyokuni, S., Woerpel, K.A.,Zhang, D.D., 2017. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285.

    34. Sun, T.,Chi, J.T., 2021. Regulation of ferroptosis in cancer cells by YAP/TAZ and Hippo pathways: The therapeutic implications. Genes Dis, 8, 241-249.

    35. Tang, D., Chen, X., Kang, R.,Kroemer, G., 2021. Ferroptosis: molecular mechanisms and health implications. Cell Res, 31, 107-125.

    36. Tong, J., Lan, X.T., Zhang, Z., Liu, Y., Sun, D.Y., Wang, X.J., Ou-Yang, S.X., Zhuang, C.L., Shen, F.M., Wang, P.,Li, D.J., 2023. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: potential involvement of PANoptosis. Acta Pharmacol Sin, 44, 1014-1028.

    37. Wang, J., Chen, Y., Gao, N., Wang, Y., Tian, Y., Wu, J., Zhang, J., Zhu, J., Fan, D.,An, J., 2013. Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice. PLoS One, 8, e55407.

    38. Wang, Y., Zhang, M., Bi, R., Su, Y., Quan, F., Lin, Y., Yue, C., Cui, X., Zhao, Q., Liu, S., Yang, Y., Zhang, D., Cao, Q.,Gao, X., 2022. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol, 51, 102262.

    39. Wang, Z.Y., Zhen, Z.D., Fan, D.Y., Qin, C.F., Han, D.S., Zhou, H.N., Wang, P.G.,An, J., 2020. Axl Deficiency Promotes the Neuroinvasion of Japanese Encephalitis Virus by Enhancing IL-1alpha Production from Pyroptotic Macrophages. J Virol, 94.

    40. Wu, J., Minikes, A.M., Gao, M., Bian, H., Li, Y., Stockwell, B.R., Chen, Z.N.,Jiang, X., 2019. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature, 572, 402-406.

    41. Xu, X.Q., Xu, T., Ji, W., Wang, C., Ren, Y., Xiong, X., Zhou, X., Lin, S.H., Xu, Y.,Qiu, Y., 2022. Herpes Simplex Virus 1-Induced Ferroptosis Contributes to Viral Encephalitis. mBio, 10.1128/mbio.02370-22, e0237022.

    42. Yagoda, N., Von Rechenberg, M., Zaganjor, E., Bauer, A.J., Yang, W.S., Fridman, D.J., Wolpaw, A.J., Smukste, I., Peltier, J.M., Boniface, J.J., Smith, R., Lessnick, S.L., Sahasrabudhe, S.,Stockwell, B.R., 2007. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 447, 864-868.

    43. Yan, Q., Zheng, W., Jiang, Y., Zhou, P., Lai, Y., Liu, C., Wu, P., Zhuang, H., Huang, H., Li, G., Zhan, S., Lao, Z.,Liu, X., 2023. Transcriptomic reveals the ferroptosis features of host response in a mouse model of Zika virus infection. J Med Virol, 95, e28386.

    44. Yang, W.H., Huang, Z., Wu, J., Ding, C.C., Murphy, S.K.,Chi, J.T., 2020. A TAZ-ANGPTL4-NOX2 Axis Regulates Ferroptotic Cell Death and Chemoresistance in Epithelial Ovarian Cancer. Mol Cancer Res, 18, 79-90.

    45. Yang, W.S., Sriramaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., Cheah, J.H., Clemons, P.A., Shamji, A.F., Clish, C.B., Brown, L.M., Girotti, A.W., Cornish, V.W., Schreiber, S.L.,Stockwell, B.R., 2014. Regulation of ferroptotic cancer cell death by GPX4. Cell, 156, 317-331.

    46. Yang, Y., Zhu, T., Wang, X., Xiong, F., Hu, Z., Qiao, X., Yuan, X.,Wang, D., 2022. ACSL3 and ACSL4, Distinct Roles in Ferroptosis and Cancers. Cancers (Basel), 14.

    47. Yuan, H., Li, X.M., Zhang, X.Y., Kang, R.,Tang, D.L., 2016. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochemical and Biophysical Research Communications, 478, 1338-1343.

    48. Yuan, H., Pratte, J.,Giardina, C., 2021. Ferroptosis and its potential as a therapeutic target. Biochem Pharmacol, 186, 114486.

    49. Zhang, D., Wu, X., Xue, X., Li, W., Zhou, P., Lv, Z., Zhao, K.,Zhu, F., 2023. Ancient dormant virus remnant ERVW-1 drives ferroptosis via degradation of GPX4 and SLC3A2 in schizophrenia. Virol Sin, 10.1016/j.virs.2023.09.001.

    50. Zhang, H.L., Hu, B.X., Li, Z.L., Du, T., Shan, J.L., Ye, Z.P., Peng, X.D., Li, X., Huang, Y., Zhu, X.Y., Chen, Y.H., Feng, G.K., Yang, D., Deng, R.,Zhu, X.F., 2022. PKCbetaII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat Cell Biol, 24, 88-98.

    51. Zhou, H., Zhou, Y.L., Mao, J.A., Tang, L.F., Xu, J., Wang, Z.X., He, Y.,Li, M., 2022. NCOA4-mediated ferritinophagy is involved in ionizing radiation-induced ferroptosis of intestinal epithelial cells. Redox Biol, 55, 102413.

    52. Zhu, S., Tao, M., Li, Y., Wang, X., Zhao, Z., Liu, Y., Li, Q., Li, Q., Lu, Y., Si, Y., Cao, S.,Ye, J., 2023. H3K27me3 of Rnf19a promotes neuroinflammatory response during Japanese encephalitis virus infection. J Neuroinflammation, 20, 168.

  • 加载中

Article Metrics

Article views(2718) PDF downloads(15) Cited by()

Related
Proportional views

    Ferroptosis contributes to JEV-induced neuronal damage and neuroinflammation

      Corresponding author: Zikai Zhao, zkzhao@mail.hzau.edu.cn
      Corresponding author: Jing Ye, yej@mail.hzau.edu.cn
    • a. National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China;
    • b. Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, 430070, China;
    • c. The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China;
    • d. Hubei Hongshan Laboratory, Wuhan, 430070, China

    Abstract: Ferroptosis is a newly discovered prototype of programmed cell death (PCD) driven by iron-dependent phospholipid peroxidation accumulation, and it has been linked to numerous organ injuries and degenerative pathologies. Although studies have shown that a variety of cell death processes contribute to JEV-induced neuroinflammation and neuronal injury, there is currently limited research on the specific involvement of ferroptosis. In this study, we explored the neuronal ferroptosis induced by JEV infection in vitro and in vivo. Our results indicated that JEV infection induces neuronal ferroptosis through inhibiting the function of the antioxidant system mediated by glutathione (GSH)/glutathione peroxidase 4 (GPX4), as well as by promoting lipid peroxidation mediated by yes-associated protein 1 (YAP1)/long-chain acyl-CoA synthetase 4 (ACSL4). Further analyses revealed that JEV E and prM proteins function as agonists, inducing ferroptosis. Moreover, we found that treatment with a ferroptosis inhibitor in JEV-infected mice reduces the viral titers and inflammation in the mouse brains, ultimately improving the survival rate of infected mice. In conclusion, our study unveils a critical role of ferroptosis in the pathogenesis of JEV, providing new ideas for the prevention and treatment of viral encephalitis.

    Reference (52) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return