Citation: Xiu-Qing Li, Meng-Pan Cai, Ming-Yang Wang, Bo-Wen Shi, Guo-Yu Yang, Jiang Wang, Bei-Bei Chu, Sheng-Li Ming. Pseudorabies virus manipulates mitochondrial tryptophanyl-tRNA synthetase 2 for viral replication .VIROLOGICA SINICA, 2024, 39(3) : 403-413.  http://dx.doi.org/10.1016/j.virs.2024.04.003

Pseudorabies virus manipulates mitochondrial tryptophanyl-tRNA synthetase 2 for viral replication

  • The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.

  • 加载中
  • 10.1016j.virs.2024.04.003-ESM.docx
    1. Ai, J.W., Weng, S.S., Cheng, Q., Cui, P., Li, Y.J., Wu, H.L., Zhu, Y.M., Xu, B.,Zhang, W.H., 2018. Human Endophthalmitis Caused By Pseudorabies Virus Infection, China, 2017. Emerg Infect Dis, 24, 1087-1090.

    2. Allen, C., Arjona, S., Santerre, M.,Sawaya, B., 2022. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses, 14.

    3. Antonellis, A.,Green, E., 2008. The role of aminoacyl-tRNA synthetases in genetic diseases. Annual review of genomics and human genetics, 9, 87-107.

    4. Bonnevie-Nielsen, V., Gerdes, A., Fleckner, J., Petersen, J., Michelsen, B.,Dyrberg, T., 1991. Interferon stimulates the expression of 2',5'-oligoadenylate synthetase and MHC class I antigens in insulin-producing cells. Journal of interferon research, 11, 255-260.

    5. Burke, E., Frucht, S., Thompson, K., Wolfe, L., Yokoyama, T., Bertoni, M., Huang, Y., Sincan, M., Adams, D., Taylor, R., Gahl, W., Toro, C.,Malicdan, M., 2018. Biallelic mutations in mitochondrial tryptophanyl-tRNA synthetase cause Levodopa-responsive infantile-onset Parkinsonism. Clinical genetics, 93, 712-718.

    6. Cao, S., Dhungel, P.,Yang, Z., 2017. Going against the Tide: Selective Cellular Protein Synthesis during Virally Induced Host Shutoff. Journal of virology, 91.

    7. Chen, Y., Yu, C.Y.,Deng, W.M., 2019. The role of pro-inflammatory cytokines in lipid metabolism of metabolic diseases. Int Rev Immunol, 38, 249-266.

    8. Curtis, C., Shah, S., Chin, S., Turashvili, G., Rueda, O., Dunning, M., Speed, D., Lynch, A., Samarajiwa, S., Yuan, Y., Graf, S., Ha, G., Haffari, G., Bashashati, A., Russell, R., Mckinney, S., Langeroed, A., Green, A., Provenzano, E., Wishart, G., Pinder, S., Watson, P., Markowetz, F., Murphy, L., Ellis, I., Purushotham, A., Boerresen-Dale, A., Brenton, J., Tavare, S., Caldas, C.,Aparicio, S., 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486, 346-352.

    9. Day, E., Ford, R., Smith, B., Houde, V., Stypa, S., Rehal, S., Lhotak, S., Kemp, B., Trigatti, B., Werstuck, G., Austin, R., Fullerton, M.,Steinberg, G., 2021. Salsalate reduces atherosclerosis through AMPKβ1 in mice. Molecular metabolism, 53, 101321.

    10. Desmet, E.A., Anguish, L.J.,Parker, J.S., 2014. Virus-mediated compartmentalization of the host translational machinery. mBio, 5, e01463-01414.

    11. Fleckner, J., Rasmussen, H.,Justesen, J., 1991. Human interferon gamma potently induces the synthesis of a 55-kDa protein (gamma 2) highly homologous to rabbit peptide chain release factor and bovine tryptophanyl-tRNA synthetase. Proceedings of the National Academy of Sciences of the United States of America, 88, 11520-11524.

    12. Frolova Lyu, Fleckner, J., Justesen, J., Timms, K., Tate, W., Kisselev, L.,Haenni, A., 1993. Are the tryptophanyl-tRNA synthetase and the peptide-chain-release factor from higher eukaryotes one and the same protein? European journal of biochemistry, 212, 457-466.

    13. Gack, M.U., Wang, J., Li, G.-L., Ming, S.-L., Wang, C.-F., Shi, L.-J., Su, B.-Q., Wu, H.-T., Zeng, L., Han, Y.-Q., Liu, Z.-H., Jiang, D.-W., Du, Y.-K., Li, X.-D., Zhang, G.-P., Yang, G.-Y.,Chu, B.-B., 2020. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses. PLOS Pathogens, 16.

    14. Gale, M., Tan, S.,Katze, M., 2000. Translational control of viral gene expression in eukaryotes. Microbiology and molecular biology reviews : MMBR, 64, 239-280.

    15. Han, S., Sun, S., Li, P., Liu, Q., Zhang, Z., Dong, H., Sun, M., Wu, W., Wang, X.,Guo, H., 2020. Ribosomal Protein L13 Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus in a Helicase DDX3-Dependent Manner. J Virol, 94.

    16. Heid, I., Jackson, A., Randall, J., Winkler, T., Qi, L., Steinthorsdottir, V., Thorleifsson, G., Zillikens, M., Speliotes, E., Magi, R., et al., 2010. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nature genetics, 42, 949-960.

    17. Keating, S.E., Baran, M.,Bowie, A.G., 2011. Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol, 32, 574-581.

    18. Lee, H., Lee, E., Uddin, M., Kim, T., Kim, J., Chathuranga, K., Chathuranga, W., Jin, M., Kim, S., Kim, C.,Lee, J., 2019. Released Tryptophanyl-tRNA Synthetase Stimulates Innate Immune Responses against Viral Infection. Journal of virology, 93.

    19. Li, G., Su, B., Fu, P., Bai, Y., Ding, G., Li, D., Wang, J., Yang, G.,Chu, B., 2022. NPC1-regulated dynamic of clathrin-coated pits is essential for viral entry. Sci China Life Sci, 65, 341-361.

    20. Li, X., Zeng, L., Liang, D., Qi, Y., Yang, G., Zhong, K., Chu, B.,Wang, J., 2023. TMEM41B Is an Interferon-Stimulated Gene That Promotes Pseudorabies Virus Replication. Journal of virology, 10.1128/jvi.00412-23, e0041223.

    21. Li, Y., Chang, H., Yang, X., Zhao, Y., Chen, L., Wang, X., Liu, H., Wang, C.,Zhao, J., 2015. Antiviral Activity of Porcine Interferon Regulatory Factor 1 against Swine Viruses in Cell Culture. Viruses, 7, 5908-5918.

    22. Liu, F., Smith, J., Zhang, Z., Cole, R.,Herron, B., 2010. Genetic heterogeneity of skin microvasculature. Developmental biology, 340, 480-489.

    23. Liu, S.Y., Aliyari, R., Chikere, K., Li, G., Marsden, M.D., Smith, J.K., Pernet, O., Guo, H., Nusbaum, R., Zack, J.A., Freiberg, A.N., Su, L., Lee, B.,Cheng, G., 2013. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity, 38, 92-105.

    24. Lorizate, M.,Krausslich, H.G., 2011. Role of lipids in virus replication. Cold Spring Harb Perspect Biol, 3, a004820.

    25. Lu, S., Wang, L., Lombardo, K., Kwak, Y., Kim, W.,Resnick, M., 2020. Expression of Indoleamine 2, 3-dioxygenase 1 (IDO1) and Tryptophanyl-tRNA Synthetase (WARS) in Gastric Cancer Molecular Subtypes. Applied immunohistochemistry & molecular morphology : AIMM, 28, 360-368.

    26. Maras, J., Sharma, S., Bhat, A., Rooge, S., Aggrawal, R., Gupta, E.,Sarin, S., 2021. Multi-omics analysis of respiratory specimen characterizes baseline molecular determinants associated with SARS-CoV-2 outcome. iScience, 24, 102823.

    27. Martinelli, S., Cordeddu, V., Galosi, S., Lanzo, A., Palma, E., Pannone, L., Ciolfi, A., Di Nottia, M., Rizza, T., Bocchinfuso, G., et al., 2020. Co-occurring WARS2 and CHRNA6 mutations in a child with a severe form of infantile parkinsonism. Parkinsonism Relat Disord, 72, 75-79.

    28. Masomian, M., Lalani, S.,Poh, C., 2021. Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71). Molecules (Basel, Switzerland), 26.

    29. Mettenleiter, T.C., 1999. Aujeszky's disease (pseudorabies) virus: the virus and molecular pathogenesis. Vet Res, 31, 99-115.

    30. Najimi, N., Zahednasab, H., Farahmand, M., Fouladvand, A., Talei, G., Bouzari, B., Khanizadeh, S.,Karampoor, S., 2023. Exploring the role of tryptophanyl-tRNA synthetase and associations with inflammatory markers and clinical outcomes in COVID-19 patients: A case-control study. Microbial pathogenesis, 183, 106300.

    31. Pomeranz, L.E., Reynolds, A.E.,Hengartner, C.J., 2005. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev, 69, 462-500.

    32. Sanchez, E., Quintas, A., Nogal, M., Castello, A.,Revilla, Y., 2013. African swine fever virus controls the host transcription and cellular machinery of protein synthesis. Virus research, 173, 58-75.

    33. Skorvanek, M., Rektorova, I., Mandemakers, W., Wagner, M., Steinfeld, R., Orec, L., Han, V., Pavelekova, P., Lackova, A., Kulcsarova, K., Ostrozovicova, M., Gdovinova, Z., Plecko, B., Brunet, T., Berutti, R., Kuipers, D., Boumeester, V., Havrankova, P., Tijssen, M., Kaiyrzhanov, R., Rizig, M., Houlden, H., Winkelmann, J., Bonifati, V., Zech, M.,Jech, R., 2022. WARS2 mutations cause dopa-responsive early-onset parkinsonism and progressive myoclonus ataxia. Parkinsonism & related disorders, 94, 54-61.

    34. Takaoka, A., Wang, Z., Choi, M.K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., Kodama, T., Honda, K., Ohba, Y.,Taniguchi, T., 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature, 448, 501-505.

    35. Tarnopolsky, M., Kozenko, M.,Jones, K., 2020. Expanding the Phenotype: Neurodevelopmental Disorder, Mitochondrial, With Abnormal Movements and Lactic Acidosis, With or Without Seizures (NEMMLAS) Due to WARS2 Biallelic Variants, Encoding Mitochondrial Tryptophanyl-tRNA Synthase. Journal of child neurology, 35, 176-177.

    36. Walsh, D., Mathews, M.,Mohr, I., 2013. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harbor perspectives in biology, 5, a012351.

    37. Walsh, D.,Mohr, I., 2011. Viral subversion of the host protein synthesis machinery. Nature reviews. Microbiology, 9, 860-875.

    38. Wang, J., Chu, B., Du, L., Han, Y., Zhang, X., Fan, S., Wang, Y.,Yang, G., 2015. Molecular cloning and functional characterization of porcine cyclic GMP-AMP synthase. Mol Immunol, 65, 436-445.

    39. Wang, J., Liu, J.Y., Shao, K.Y., Han, Y.Q., Li, G.L., Ming, S.L., Su, B.Q., Du, Y.K., Liu, Z.H., Zhang, G.P., Yang, G.Y.,Chu, B.B., 2019. Porcine Reproductive and Respiratory Syndrome Virus Activates Lipophagy To Facilitate Viral Replication through Downregulation of NDRG1 Expression. J Virol, 93.

    40. Wang, J., Wang, C.F., Ming, S.L., Li, G.L., Zeng, L., Wang, M.D., Su, B.Q., Wang, Q., Yang, G.Y.,Chu, B.B., 2020. Porcine IFITM1 is a host restriction factor that inhibits pseudorabies virus infection. Int J Biol Macromol, 151, 1181-1193.

    41. Wang, J., Zeng, L., Zhang, L., Guo, Z.Z., Lu, S.F., Ming, S.L., Li, G.L., Wan, B., Tian, K.G., Yang, G.Y.,Chu, B.B., 2017. Cholesterol 25-hydroxylase acts as a host restriction factor on pseudorabies virus replication. J Gen Virol, 98, 1467-1476.

    42. Wang, M., Sips, P., Khin, E., Rotival, M., Sun, X., Ahmed, R., Widjaja, A.A., Schafer, S., Yusoff, P., Choksi, P.K., Ko, N.S., Singh, M.K., Epstein, D., Guan, Y., Houstek, J., Mracek, T., Nuskova, H., Mikell, B., Tan, J., Pesce, F., Kolar, F., Bottolo, L., Mancini, M., Hubner, N., Pravenec, M., Petretto, E., Macrae, C.,Cook, S.A., 2016. Wars2 is a determinant of angiogenesis. Nat Commun, 7, 12061.

    43. Wang, R.,Li, K., 2012. Host factors in the replication of positive-strand RNA viruses. Chang Gung medical journal, 35, 111-124.

    44. Wang, Y., Li, G.L., Qi, Y.L., Li, L.Y., Wang, L.F., Wang, C.R., Niu, X.R., Liu, T.X., Wang, J., Yang, G.Y., Zeng, L.,Chu, B.B., 2022. Pseudorabies Virus Inhibits Expression of Liver X Receptors to Assist Viral Infection. Viruses, 14.

    45. Wang, Z., Choi, M., Ban, T., Yanai, H., Negishi, H., Lu, Y., Tamura, T., Takaoka, A., Nishikura, K.,Taniguchi, T., 2007. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci USA, 105, 5477-5482.

    46. Wong, G., Lu, J., Zhang, W.,Gao, G.F., 2019. Pseudorabies virus: a neglected zoonotic pathogen in humans? Emerg Microbes Infect, 8, 150-154.

    47. Wozniakowski, G.,Samorek-Salamonowicz, E., 2015. Animal herpesviruses and their zoonotic potential for cross-species infection. Ann Agric Environ Med, 22, 191-194.

    48. Xiao, J., Li, W., Zheng, X., Qi, L., Wang, H., Zhang, C., Wan, X., Zheng, Y., Zhong, R., Zhou, X., Lu, Y., Li, Z., Qiu, Y., Liu, C., Zhang, F., Zhang, Y., Xu, X., Yang, Z., Chen, H., Zhai, Q., Wei, B.,Wang, H., 2020. Targeting 7-Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and IRF3 Activation to Eliminate Infection. Immunity, 52, 109-122 e106.

    49. Xie, L., Fang, L., Wang, D., Luo, R., Cai, K., Chen, H.,Xiao, S., 2010. Molecular cloning and functional characterization of porcine DNA-dependent activator of IFN-regulatory factors (DAI). Developmental and comparative immunology, 34, 293-299.

    50. Xu, N., Zhang, Z.-F., Wang, L., Gao, B., Pang, D.-W., Wang, H.-Z.,Zhang, Z.-L., 2012. A microfluidic platform for real-time andin situmonitoring of virus infection process. Biomicrofluidics, 6.

    51. Yang, X., Guan, H., Li, C., Li, Y., Wang, S., Zhao, X., Zhao, Y.,Liu, Y., 2019. Characteristics of human encephalitis caused by pseudorabies virus: A case series study. Int J Infect Dis, 87, 92-99.

    52. Yao, P.,Fox, P., 2013. Aminoacyl-tRNA synthetases in medicine and disease. EMBO molecular medicine, 5, 332-343.

    53. Yeung, M., Jia, L., Yip, C., Chan, J., Teng, J., Chan, K., Cai, J., Zhang, C., Zhang, A., Wong, W., Kok, K., Lau, S., Woo, P., Lo, J., Jin, D., Shih, S.,Yuen, K., 2018. Human tryptophanyl-tRNA synthetase is an IFN-γ-inducible entry factor for Enterovirus. The Journal of clinical investigation, 128, 5163-5177.

    54. Yu, P., Fu, P., Zeng, L., Qi, L., Wang, Q., Yang, G., Li, H., Wang, J., Chu, B.,Wang, M., 2022. EGCG Restricts PRRSV Proliferation by Disturbing Lipid Metabolism. Microbiology Spectrum, 10, 02276-02221.

    55. Zhu, T., Jiang, X., Xin, H., Zheng, X., Xue, X., Chen, J.L.,Qi, B., 2021. GADD34-mediated dephosphorylation of eIF2alpha facilitates pseudorabies virus replication by maintaining de novo protein synthesis. Vet Res, 52, 148.

  • 加载中

Figures(1)

Article Metrics

Article views(198) PDF downloads(0) Cited by()

Related
Proportional views

    Pseudorabies virus manipulates mitochondrial tryptophanyl-tRNA synthetase 2 for viral replication

      Corresponding author: Jiang Wang, wangjiang@henau.edu.cn
      Corresponding author: Bei-Bei Chu, chubeibei@henau.edu.cn
      Corresponding author: Sheng-Li Ming, mingsl911102@163.com
    • a. College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China;
    • b. Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China;
    • c. Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China;
    • d. Longhu Advanced Immunization Laboratory, Zhengzhou 450046, China;
    • e. International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China;
    • f. Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China;
    • g. School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China

    Abstract: The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.

    Figure (1)  Reference (55) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return