Citation: Xiuli Shen, Shuhui Wang, Yanling Hao, Yuyu Fu, Li Ren, Dan Li, Wenqi Tang, Jing Li, Ran Chen, Meiling Zhu, Shuo Wang, Ying Liu, Yiming Shao. DNA vaccine prime and replicating vaccinia vaccine boost induce robust humoral and cellular immune responses against MERS-CoV in mice .VIROLOGICA SINICA, 2024, 39(3) : 490-500.  http://dx.doi.org/10.1016/j.virs.2024.05.005

DNA vaccine prime and replicating vaccinia vaccine boost induce robust humoral and cellular immune responses against MERS-CoV in mice

  • As of December 2022, 2603 laboratory-identified Middle East respiratory syndrome coronavirus (MERS-CoV) infections and 935 associated deaths, with a mortality rate of 36%, had been reported to the World Health Organization (WHO). However, there are still no vaccines for MERS-CoV, which makes the prevention and control of MERS-CoV difficult. In this study, we generated two DNA vaccine candidates by integrating MERS-CoV Spike (S) gene into a replicating Vaccinia Tian Tan (VTT) vector. Compared to homologous immunization with either vaccine, mice immunized with DNA vaccine prime and VTT vaccine boost exhibited much stronger and durable humoral and cellular immune responses. The immunized mice produced robust binding antibodies and broad neutralizing antibodies against the EMC2012, England1 and KNIH strains of MERS-CoV. Prime-Boost immunization also induced strong MERS-S specific T cells responses, with high memory and poly-functional (CD107a-IFN-γ-TNF-α) effector CD8+ T cells. In conclusion, the research demonstrated that DNA-Prime/VTT-Boost strategy could elicit robust and balanced humoral and cellular immune responses against MERS-CoV-S. This study not only provides a promising set of MERS-CoV vaccine candidates, but also proposes a heterologous sequential immunization strategy worthy of further development.

  • 加载中
  • 10.1016j.virs.2024.05.005-ESM.docx
    1. Alharbi NK, Padron-Regalado E, Thompson CP, Kupke A, Wells D, Sloan MA, Grehan K, Temperton N, Lambe T, Warimwe G, Becker S, Hill AVS, Gilbert SC. 2017. ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine, 35, 3780-3788.

    2. Bergwerk M, Gonen T, Lustig Y, Amit S, Lipsitch M, Cohen C, Mandelboim M, Levin EG, Rubin C, Indenbaum V, Tal I, Zavitan M, Zuckerman N, Bar-Chaim A, Kreiss Y, Regev-Yochay G. 2021. Covid-19 breakthrough infections in vaccinated health care workers. N. Engl. J. Med., 385, 1474-1484.

    3. Bosaeed M, Balkhy HH, Almaziad S, Aljami HA, Alhatmi H, Alanazi H, Alahmadi M, Jawhary A, Alenazi MW, Almasoud A, Alanazi R, Bittaye M, Aboagye J, Albaalharith N, Batawi S, Folegatti P, Ramos Lopez F, Ewer K, Almoaikel K, Aljeraisy M, Alothman A, Gilbert SC, Khalaf Alharbi N. 2022. Safety and immunogenicity of ChAdOx1 MERS vaccine candidate in healthy Middle Eastern adults (MERS002): an open-label, non-randomised, dose-escalation, phase 1b trial. Lancet Microbe, 3, e11-e20.

    4. Cancro MP, Tomayko MM. 2021. Memory B cells and plasma cells: the differentiative continuum of humoral immunity. Immunol. Rev., 303, 72-82.

    5. Chi H, Zheng X, Wang X, Wang C, Wang H, Gai W, Perlman S, Yang S, Zhao J, Xia X. 2017. DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice. Vaccine, 35, 2069-2075.

    6. Chi H, Wang Y, Li E, Wang X, Wang H, Jin H, Han Q, Wang Z, Wang X, Zhu A, Sun J, Zhuang Z, Zhang L, Ye J, Wang H, Feng N, Hu M, Gao Y, Zhao J, Zhao Y, Yang S, Xia X. 2022. Inactivated rabies virus vectored MERS-Coronavirus vaccine induces protective immunity in mice, camels, and alpacas. Front. Immunol., 13, 823949.

    7. Cho H, Jang Y, Park K-H, Choi H, Nowakowska A, Lee H-J, Kim M, Kang M-H, Kim J-H, Shin HY, Oh Y-K, Kim YB. 2021. Human endogenous retrovirus-enveloped baculoviral DNA vaccines against MERS-CoV and SARS-CoV2. NPJ Vaccines, 6, 37.

    8. Choi JA, Goo J, Yang E, Jung DI, Lee S, Rho S, Jeong Y, Park YS, Park H, Moon YH, Park U, Seo SH, Lee H, Lee JM, Cho NH, Song M, Kim JO. 2020. Cross-protection against MERS-CoV by prime-boost vaccination using viral spike DNA and protein. J. Virol., 94, e01176-20.

    9. Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M, Loens K, Jebbink MF, Matser A, Kinsella CM, Rueda P, Ieven M, Goossens H, Prins M, Sastre P, Deijs M, van der Hoek L. 2020. Seasonal coronavirus protective immunity is short-lasting. Nat. Med., 26, 1691-1693.

    10. Flaxman A, Marchevsky NG, Jenkin D, Aboagye J, Aley PK, Angus B, Belij-Rammerstorfer S, Bibi S, Bittaye M, Cappuccini F, et al. 2021. Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002). Lancet, 398, 981-990.

    11. Garcia-Arriaza J, Garaigorta U, Perez P, Lazaro-Frias A, Zamora C, Gastaminza P, Del Fresno C, Casasnovas JM, Sorzano COS, Sancho D, Esteban M. 2021. COVID-19 vaccine candidates based on modified vaccinia virus Ankara expressing the SARS-CoV-2 spike protein induce robust T- and B-cell immune responses and full efficacy in mice. J. Virol., 95, e02260-20.

    12. Hashem AM, Algaissi A, Agrawal AS, Al-Amri SS, Alhabbab RY, Sohrab SS, A SA, Alharbi NK, Peng BH, Russell M, Li X, Tseng CK. 2019. A highly immunogenic, protective, and safe adenovirus-based vaccine expressing Middle East respiratory syndrome coronavirus S1-CD40L fusion protein in a transgenic human dipeptidyl peptidase 4 mouse model. J. Infect. Dis., 220, 1558-1567.

    13. Hayashi H, Sun J, Yanagida Y, Otera T, Kubota-Koketsu R, Shioda T, Ono C, Matsuura Y, Arase H, Yoshida S, Nakamaru R, Ju N, Ide R, Tenma A, Kawabata S, Ehara T, Sakaguchi M, Tomioka H, Shimamura M, Okamoto S, Amaishi Y, Chono H, Mineno J, Komatsuno T, Saito Y, Rakugi H, Morishita R, Nakagami H. 2022. Preclinical study of a DNA vaccine targeting SARS-CoV-2. Current Research in Translational Medicine, 70, 103348.

    14. Hnasko TS, Hnasko RM. 2015. The western blot. Methods Mol. Biol., 1318, 87-96.

    15. Kim N, Lee TY, Lee H, Yang JS, Kim KC, Lee JY, Kim HJ. 2022. Comparing the immunogenicity and protective effects of three MERS-CoV inactivation methods in mice. Vaccines, 10, 1843.

    16. Koch T, Dahlke C, Fathi A, Kupke A, Krahling V, Okba NMA, Halwe S, Rohde C, Eickmann M, Volz A, Hesterkamp T, Jambrecina A, Borregaard S, Ly ML, Zinser ME, Bartels E, Poetsch JSH, Neumann R, Fux R, Schmiedel S, Lohse AW, Haagmans BL, Sutter G, Becker S, Addo MM. 2020. Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: an open-label, phase 1 trial. Lancet Infect. Dis., 20, 827-838.

    17. Laczko D, Hogan MJ, Toulmin SA, Hicks P, Lederer K, Gaudette BT, Castano D, Amanat F, Muramatsu H, Oguin TH, et al. 2020. A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice. Immunity, 53, 724-732.e7.

    18. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. 2020. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581, 215-220.

    19. Li L, Petrovsky N. 2016. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev. Vaccines, 15, 313-329.

    20. Li YD, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC. 2020. Coronavirus vaccine development: from SARS and MERS to COVID-19. J. Biomed. Sci., 27, 104.

    21. Lipsitch M, Grad YH, Sette A, Crotty S. 2020. Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat. Rev. Immunol., 20, 709-713.

    22. Liu L, Qiu C, Huang Y, Xu J, Shao Y. 2013. Potent T cell responses induced by single DNA vaccine boosted with recombinant vaccinia vaccine. Virol. Sin., 28, 109-115.

    23. Liu L, Hao Y, Luo Z, Huang Y, Hu X, Liu Y, Shao Y. 2012. Broad HIV-1 neutralizing antibody response induced by heterologous gp140/gp145 DNA prime-vaccinia boost immunization. Vaccine, 30, 4135-4143.

    24. Liu Q, Li Y, Luo Z, Yang G, Liu Y, Liu Y, Sun M, Dai J, Li Q, Qin C, Shao Y. 2015. HIV-1 vaccines based on replication-competent Tiantan vaccinia protected Chinese rhesus macaques from simian HIV infection. AIDS, 29, 649-658.

    25. Mei S, Fan Z, Liu X, Zhao F, Huang Y, Wei L, Hu Y, Xie Y, Wang L, Ai B, Liang C, Xu F, Guo F. 2022. Immunogenicity of a vaccinia virus-based severe acute respiratory syndrome coronavirus 2 vaccine candidate. Front. Immunol., 13, 911164.

    26. Modjarrad K, Roberts CC, Mills KT, Castellano AR, Paolino K, Muthumani K, Reuschel EL, Robb ML, Racine T, Oh M-d, et al. 2019. Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect. Dis., 19, 1013-1022.

    27. Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, Zhang L, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Fan C, Huang W, Xu M, Wang Y. 2020. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat. Protoc., 15, 3699-3715.

    28. Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W, Kong WP, Andres EL, Kettenbach AN, Denison MR, Chappell JD, Graham BS, Ward AB, McLellan JS. 2017. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl. Acad. Sci. U. S. A., 114, E7348-E7357.

    29. Pantaleo G, Janes H, Karuna S, Grant S, Ouedraogo GL, Allen M, Tomaras GD, Frahm N, Montefiori DC, Ferrari G, Ding S, Lee C, Robb ML, Esteban M, Wagner R, Bart P-A, Rettby N, McElrath MJ, Gilbert PB, Kublin JG, Corey L. 2019. Safety and immunogenicity of a multivalent HIV vaccine comprising envelope protein with either DNA or NYVAC vectors (HVTN 096): a phase 1b, double-blind, placebo-controlled trial. The Lancet HIV, 6, e737-e749.

    30. Paules CI, Marston HD, Fauci AS. 2020. Coronavirus infections-more than just the common cold. JAMA, 323, 707-708.

    31. Porter KR, Raviprakash K. 2017. DNA vaccine delivery and improved immunogenicity. Curr. Issues Mol. Biol., 22, 129-138.

    32. Quast I, Tarlinton D. 2021. B cell memory: understanding COVID-19. Immunity, 54, 205-210.

    33. Racaniello V, Coleman CM, Frieman MB. 2013. Emergence of the Middle East respiratory syndrome coronavirus. PLoS Pathog., 9, e1003595.

    34. Rodon J, Okba NMA, Te N, van Dieren B, Bosch BJ, Bensaid A, Segales J, Haagmans BL, Vergara-Alert J. 2019. Blocking transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) in llamas by vaccination with a recombinant spike protein. Emerg. Microb. Infect., 8, 1593-1603.

    35. Routhu NK, Cheedarla N, Gangadhara S, Bollimpelli VS, Boddapati AK, Shiferaw A, Rahman SA, Sahoo A, Edara VV, Lai L, et al. 2021. A modified vaccinia Ankara vector-based vaccine protects macaques from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs. Immunity, 54, 542-556.e9.

    36. Sahu R, Dixit S, Verma R, Duncan SA, Coats MT, Giambartolomei GH, Singh SR, Dennis VA. 2020. A nanovaccine formulation of Chlamydia recombinant MOMP encapsulated in PLGA 85:15 nanoparticles augments CD4+ effector (CD44high CD62Llow) and memory (CD44high CD62Lhigh) T-cells in immunized mice. Nanomedicine, 29, 102257.

    37. Sampson AT, Heeney J, Cantoni D, Ferrari M, Sans MS, George C, Di Genova C, Mayora Neto M, Einhauser S, Asbach B, Wagner R, Baxendale H, Temperton N, Carnell G. 2021. Coronavirus pseudotypes for all circulating human coronaviruses for quantification of cross-neutralizing antibody responses. Viruses, 13, 1579.

    38. Senga M, Arabi YM, Fowler RA. 2017. Clinical spectrum of the Middle East respiratory syndrome coronavirus (MERS-CoV). J Infect Public Health, 10, 191-194.

    39. Sissoeff L, Mousli M, England P, Tuffereau C. 2005. Stable trimerization of recombinant rabies virus glycoprotein ectodomain is required for interaction with the p75NTR receptor. J. Gen. Virol., 86, 2543-2552.

    40. Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Gary EN, Walker SN, Schultheis K, Purwar M, et al. 2020. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun., 11, 2601.

    41. Song L, Wang Q, Wen Y, Tan R, Cui Y, Xiong D, Jiao X, Pan Z, Rajao DS. 2023. Enhanced immunogenicity elicited by a novel DNA vaccine encoding the SARS-CoV-2 S1 protein fused to the optimized flagellin of Salmonella typhimurium in mice. Microbiol. Spectr., 11, e0254923.

    42. Stieh DJ, Barouch DH, Comeaux C, Sarnecki M, Stephenson KE, Walsh SR, Sawant S, Heptinstall J, Tomaras GD, Kublin JG, et al. 2023. Safety and immunogenicity of Ad26-vectored HIV vaccine with mosaic immunogens and a novel mosaic envelope protein in HIV-uninfected adults: a phase 1/2a study. J. Infect. Dis., 227, 939-950.

    43. Tang F, Quan Y, Xin ZT, Wrammert J, Ma MJ, Lv H, Wang TB, Yang H, Richardus JH, Liu W, Cao WC. 2011. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol., 186, 7264-7268.

    44. Volz A, Kupke A, Song F, Jany S, Fux R, Shams-Eldin H, Schmidt J, Becker C, Eickmann M, Becker S, Sutter G. 2015. Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein. J. Virol., 89, 8651-8656.

    45. Wang Q, Qi J, Yuan Y, Xuan Y, Han P, Wan Y, Ji W, Li Y, Wu Y, Wang J, Iwamoto A, Woo PC, Yuen KY, Yan J, Lu G, Gao GF. 2014. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe, 16, 328-337.

    46. WHO, 2023. Middle East respiratory syndrome coronavirus - Oman. https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON436 (accessed 4 November 2023).

    47. Xie L, Zai J, Yi K, Li Y. 2019. Intranasal immunization with recombinant Vaccinia virus Tiantan harboring Zaire Ebola virus gp elicited systemic and mucosal neutralizing antibody in mice. Vaccine, 37, 3335-3342.

    48. Xiong Q, Cao L, Ma C, Tortorici MA, Liu C, Si J, Liu P, Gu M, Walls AC, Wang C, Shi L, Tong F, Huang M, Li J, Zhao C, Shen C, Chen Y, Zhao H, Lan K, Corti D, Veesler D, Wang X, Yan H. 2022. Close relatives of MERS-CoV in bats use ACE2 as their functional receptors. Nature, 612, 748-757.

    49. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 367, 1814-1820.

  • 加载中

Figures(1)

Article Metrics

Article views(224) PDF downloads(1) Cited by()

Related
Proportional views

    DNA vaccine prime and replicating vaccinia vaccine boost induce robust humoral and cellular immune responses against MERS-CoV in mice

      Corresponding author: Ying Liu, yingliu@chinaaids.cn
      Corresponding author: Yiming Shao, shaoyiming@cpl.ac.cn
    • a. National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China;
    • b. Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China;
    • c. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China

    Abstract: As of December 2022, 2603 laboratory-identified Middle East respiratory syndrome coronavirus (MERS-CoV) infections and 935 associated deaths, with a mortality rate of 36%, had been reported to the World Health Organization (WHO). However, there are still no vaccines for MERS-CoV, which makes the prevention and control of MERS-CoV difficult. In this study, we generated two DNA vaccine candidates by integrating MERS-CoV Spike (S) gene into a replicating Vaccinia Tian Tan (VTT) vector. Compared to homologous immunization with either vaccine, mice immunized with DNA vaccine prime and VTT vaccine boost exhibited much stronger and durable humoral and cellular immune responses. The immunized mice produced robust binding antibodies and broad neutralizing antibodies against the EMC2012, England1 and KNIH strains of MERS-CoV. Prime-Boost immunization also induced strong MERS-S specific T cells responses, with high memory and poly-functional (CD107a-IFN-γ-TNF-α) effector CD8+ T cells. In conclusion, the research demonstrated that DNA-Prime/VTT-Boost strategy could elicit robust and balanced humoral and cellular immune responses against MERS-CoV-S. This study not only provides a promising set of MERS-CoV vaccine candidates, but also proposes a heterologous sequential immunization strategy worthy of further development.

    Figure (1)  Reference (49) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return