Citation: Wen-Jun Tian, Xiu-Zhong Zhang, Jing Wang, Jian-Feng Liu, Fu-Huang Li, Xiao-Jia Wang. Calmodulin-like 5 promotes PEDV replication by regulating late-endosome synthesis and innate immune response .VIROLOGICA SINICA, 2024, 39(3) : 501-512.  http://dx.doi.org/10.1016/j.virs.2024.05.006

Calmodulin-like 5 promotes PEDV replication by regulating late-endosome synthesis and innate immune response

  • The infection caused by porcine epidemic diarrhea virus (PEDV) is associated with high mortality in piglets worldwide. Host factors involved in the efficient replication of PEDV, however, remain largely unknown. Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5 (EF-hand protein calmodulin-like 5) following PEDV infection. A further study unveiled a biphasic increase of CALML5 in 2 and 12 h after viral infection. Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge. Moreover, CALML5 depletion reduced PEDV mRNA and protein levels, leading to a one-order-of-magnitude decrease in virus titer. At the early stage of PEDV infection, CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins. CALML5 depletion also suppressed IFN-β and IL-6 production in the PEDV-infected cells, thereby indicating its involvement in negatively regulating the innate immune response. Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.

  • 加载中
  • 10.1016j.virs.2024.05.006-ESM.docx
    1. Bai, D., Fang, L., Xia, S., Ke, W., Wang, J., Wu, X., Fang, P., Xiao, S., 2020. Porcine deltacoronavirus (PDCoV) modulates calcium influx to favor viral replication. Virology, 539, 38-48.

    2. Barouch-Bentov, R., Neveu, G., Xiao, F., Beer, M., Bekerman, E., Schor, S., Campbell, J., Boonyaratanakornkit, J., Lindenbach, B., Lu, A., Jacob, Y., Einav, S., 2016. Hepatitis C virus proteins interact with the endosomal sorting complex required for transport (ESCRT) machinery via ubiquitination to facilitate viral envelopment. mBio, 7, e01456-16.

    3. Bu, J., Zhang, Y., Niu, N., Bi, K., Sun, L., Qiao, X., Wang, Y., Zhang, Y., Jiang, X., Wang, D., Ma, Q., Li, H., Liu, C., 2023. Dalpiciclib partially abrogates ER signaling activation induced by pyrotinib in HER2(+)HR(+) breast cancer. Elife, 12, e85246.

    4. Deng, L., Liang, Y., Ariffianto, A., Matsui, C., Abe, T., Muramatsu, M., Wakita, T., Maki, M., Shibata, H., Shoji, I., 2022. Hepatitis C virus-induced ROS/JNK signaling pathway activates the E3 ubiquitin ligase itch to promote the release of HCV particles via polyubiquitylation of VPS4A. J. Virol., 96, e0181121.

    5. Dong, H.J., Wang, J., Zhang, X.Z., Li, C.C., Liu, J.F., Wang, X.J., 2023. Proteomic screening identifies RPLp2 as a specific regulator for the translation of coronavirus. Int. J. Biol. Macromol., 230, 123191.

    6. Guo, X., Feng, Y., Zhao, X., Qiao, S., Ma, Z., Li, Z., Zheng, H., Xiao, S., 2023. Coronavirus porcine epidemic diarrhea virus utilizes chemokine interleukin-8 to facilitate viral replication by regulating Ca(2+) flux. J. Virol., 97, e0029223.

    7. Hoffmann, M.a.G., Yang, Z., Huey-Tubman, K.E., Cohen, A.A., Gnanapragasam, P.N.P., Nakatomi, L.M., Storm, K.N., Moon, W.J., Lin, P.J.C., West, A.P., Jr., Bjorkman, P.J., 2023. ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that improve mRNA vaccines. Cell, 186, 2380-2391.e9.

    8. Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q.X., Chen, Z.J., 2011. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell, 146, 448-461.

    9. Hu, Y.B., Dammer, E.B., Ren, R.J., Wang, G., 2015. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl. Neurodegener., 4, 18.

    10. Jurgeit, A., Mcdowell, R., Moese, S., Meldrum, E., Schwendener, R., Greber, U.F., 2012. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects. PLoS Pathog., 8, e1002976.

    11. Kanamori, K., Suina, K., Shukuya, T., Takahashi, F., Hayashi, T., Hara, K., Saito, T., Mitsuishi, Y., Shimamura, S.S., Winardi, W., Tajima, K., Ko, R., Mimori, T., Asao, T., Itoh, M., Kawaji, H., Suehara, Y., Takamochi, K., Suzuki, K., Takahashi, K., 2023. CALML5 is a novel diagnostic marker for differentiating thymic squamous cell carcinoma from type B3 thymoma. Thorac. Cancer, 14, 1089-1097.

    12. Kreutzberger, A.J.B., Sanyal, A., Saminathan, A., Bloyet, L.M., Stumpf, S., Liu, Z., Ojha, R., Patjas, M.T., Geneid, A., Scanavachi, G., Doyle, C.A., Somerville, E., Correia, R., Di Caprio, G., Toppila-Salmi, S., Makitie, A., Kiessling, V., Vapalahti, O., Whelan, S.P.J., Balistreri, G., Kirchhausen, T., 2022. SARS-CoV-2 requires acidic pH to infect cells. Proc. Natl. Acad. Sci. U. S. A., 119, e2209514119.

    13. Lee, C., 2015. Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus. Virol. J., 12, 193.

    14. Li, C.C., Chi, X.J., Wang, J., Potter, A.L., Wang, X.J., Yang, C.J., 2023. Small molecule RAF265 as an antiviral therapy acts against HSV-1 by regulating cytoskeleton rearrangement and cellular translation machinery. J. Med. Virol., 95, e28226.

    15. Li, F., Zhao, N., Li, Z., Xu, X., Wang, Y., Yang, X., Liu, S.S., Wang, A., Zhou, X., 2017. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathog., 13, e1006213.

    16. Liang, R., Song, H., Wang, K., Ding, F., Xuan, D., Miao, J., Fei, R., Zhang, J., 2022. Porcine epidemic diarrhea virus 3CL(pro) causes apoptosis and collapse of mitochondrial membrane potential requiring its protease activity and signaling through MAVS. Vet. Microbiol., 275, 109596.

    17. Liu, S., Cai, X., Wu, J., Cong, Q., Chen, X., Li, T., Du, F., Ren, J., Wu, Y.T., Grishin, N.V., Chen, Z.J., 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 347, aaa2630.

    18. Mcbride, R., Van Zyl, M., Fielding, B.C., 2014. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6, 2991-3018.

    19. Meng, B., Ip, N.C.Y., Abbink, T.E.M., Kenyon, J.C., Lever, A.M.L., 2020. ESCRT-II functions by linking to ESCRT-I in human immunodeficiency virus-1 budding. Cell Microbiol., 22, e13161.

    20. Nakahara, K.S., Masuta, C., Yamada, S., Shimura, H., Kashihara, Y., Wada, T.S., Meguro, A., Goto, K., Tadamura, K., Sueda, K., Sekiguchi, T., Shao, J., Itchoda, N., Matsumura, T., Igarashi, M., Ito, K., Carthew, R.W., Uyeda, I., 2012. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc. Natl. Acad. Sci. U. S. A., 109, 10113-10118.

    21. Park, J.E., Cruz, D.J., Shin, H.J., 2014. Clathrin- and serine proteases-dependent uptake of porcine epidemic diarrhea virus into Vero cells. Virus Res., 191, 21-29.

    22. Qian, S., Zhang, W., Jia, X., Sun, Z., Zhang, Y., Xiao, Y., Li, Z., 2019. Isolation and identification of porcine epidemic diarrhea virus and its effect on host natural immune response. Front. Microbiol., 10, 2272.

    23. Ragia, G.,Manolopoulos, V.G., 2020. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: a promising approach for uncovering early COVID-19 drug therapies. Eur. J. Clin. Pharmacol., 76, 1623-1630.

    24. Sheng, C., Wang, Z., Yao, C., Chen, H.M., Kan, G., Wang, D., Chen, H., Chen, S., 2020. CALML6 controls TAK1 ubiquitination and confers protection against acute inflammation. J. Immunol., 204, 3008-3018.

    25. Shi, J., Jia, X., He, Y., Ma, X., Qi, X., Li, W., Gao, S.J., Yan, Q., Lu, C., 2023. Immune evasion strategy involving propionylation by the KSHV interferon regulatory factor 1 (vIRF1). PLoS Pathog., 19, e1011324.

    26. Shi, P., Su, Y., Li, R., Liang, Z., Dong, S., Huang, J., 2019. PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Virus Res., 265, 57-66.

    27. Sun, B.K., Boxer, L.D., Ransohoff, J.D., Siprashvili, Z., Qu, K., Lopez-Pajares, V., Hollmig, S.T., Khavari, P.A., 2015. CALML5 is a ZNF750- and TINCR-induced protein that binds stratifin to regulate epidermal differentiation. Genes Dev., 29, 2225-2230.

    28. Sun, L., Zhao, C., Fu, Z., Fu, Y., Su, Z., Li, Y., Zhou, Y., Tan, Y., Li, J., Xiang, Y., Nie, X., Zhang, J., Liu, F., Zhao, S., Xie, S., Peng, G., 2021. Genome-scale CRISPR screen identifies TMEM41B as a multi-function host factor required for coronavirus replication. PLoS Pathog., 17, e1010113.

    29. Temeeyasen, G., Sinha, A., Gimenez-Lirola, L.G., Zhang, J.Q., Pineyro, P.E., 2018. Differential gene modulation of pattern-recognition receptor TLR and RIG-I-like and downstream mediators on intestinal mucosa of pigs infected with PEDV non S-INDEL and PEDV S-INDEL strains. Virology, 517, 188-198.

    30. Wang, J., Tian, W.J., Li, C.C., Zhang, X.Z., Fan, K., Li, S.L., Wang, X.J., 2022. Small-Molecule RAF265 as an antiviral therapy acts against PEDV infection. Viruses, 14, 2261.

    31. Wang, Y., Huang, H., Li, D., Zhao, C., Li, S., Qin, P., Li, Y., Yang, X., Du, W., Li, W., Li, Y., 2023. Identification of niclosamide as a novel antiviral agent against porcine epidemic diarrhea virus infection by targeting viral internalization. Virol. Sin., 38, 296-308.

    32. Wang, Z., Sheng, C., Yao, C., Chen, H., Wang, D., Chen, S., 2019. The EF-hand protein CALML6 suppresses antiviral innate immunity by impairing IRF3 dimerization. Cell Rep., 26, 1273-1285.e5.

    33. Wei, X., She, G., Wu, T., Xue, C., Cao, Y., 2020. PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway. Vet. Res., 51, 10.

    34. Yang, B., Jia, Y., Meng, Y., Xue, Y., Liu, K., Li, Y., Liu, S., Li, X., Cui, K., Shang, L., Cheng, T., Zhang, Z., Hou, Y., Yang, X., Yan, H., Duan, L., Tong, Z., Wu, C., Liu, Z., Gao, S., Zhuo, S., Huang, W., Gao, G.F., Qi, J., Shang, G., 2022. SNX27 suppresses SARS-CoV-2 infection by inhibiting viral lysosome/late endosome entry. Proc. Natl. Acad. Sci. U. S. A., 119, e2117576119.

    35. Zhang, H., Zou, C., Peng, O., Ashraf, U., Xu, Q., Gong, L., Fan, B., Zhang, Y., Xu, Z., Xue, C., Wei, X., Zhou, Q., Tian, X., Shen, H., Li, B., Zhang, X.,Cao, Y., 2023. Global dynamics of porcine enteric coronavirus PEDV epidemiology, evolution, and transmission. Mol. Biol. Evol., 40, msad052.

    36. Zhang, L., Li, R., Geng, R., Wang, L., Chen, X.X., Qiao, S.,Zhang, G., 2022. Tumor susceptibility gene 101 (TSG101) contributes to virion formation of porcine reproductive and respiratory syndrome virus via interaction with the nucleocapsid (N) protein along with the early secretory pathway. J. Virol., 96, e0000522.

    37. Zhang, W., Shen, H., Wang, M., Fan, X., Wang, S., Wuri, N., Zhang, B., He, H., Zhang, C., Liu, Z., Liao, M., Zhang, J., Li, Y.,Zhang, J., 2023. Fangchinoline inhibits the PEDV replication in intestinal epithelial cells via autophagic flux suppression. Front. Microbiol., 14, 1164851.

    38. Zhang, X.Z., Tian, W.J., Wang, J., You, J.L.,Wang, X.J., 2022. Death receptor DR5 as a proviral factor for viral entry and replication of coronavirus PEDV. Viruses, 14, 2724.

  • 加载中

Figures(1)

Article Metrics

Article views(440) PDF downloads(1) Cited by()

Related
Proportional views

    Calmodulin-like 5 promotes PEDV replication by regulating late-endosome synthesis and innate immune response

      Corresponding author: Jian-Feng Liu, liujf@cau.edu.cn
      Corresponding author: Fu-Huang Li, lfh5118@126.com
      Corresponding author: Xiao-Jia Wang, wangxj@cau.edu.cn
    • a. National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
    • b. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
    • c. Beijing General Station of Animal Husbandry Service (South Section), Beijing, 102218, China

    Abstract: The infection caused by porcine epidemic diarrhea virus (PEDV) is associated with high mortality in piglets worldwide. Host factors involved in the efficient replication of PEDV, however, remain largely unknown. Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5 (EF-hand protein calmodulin-like 5) following PEDV infection. A further study unveiled a biphasic increase of CALML5 in 2 and 12 h after viral infection. Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge. Moreover, CALML5 depletion reduced PEDV mRNA and protein levels, leading to a one-order-of-magnitude decrease in virus titer. At the early stage of PEDV infection, CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins. CALML5 depletion also suppressed IFN-β and IL-6 production in the PEDV-infected cells, thereby indicating its involvement in negatively regulating the innate immune response. Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.

    Figure (1)  Reference (38) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return