Citation: Jikai Deng, Feiyu Gong, Yingjian Li, Xue Tan, Xuemei Liu, Shimin Yang, Xianying Chen, Hongyun Wang, Qianyun Liu, Chao Shen, Li Zhou, Yu Chen. Structural and functional insights into the 2'-O-methyltransferase of SARS-CoV-2 .VIROLOGICA SINICA, 2024, 39(4) : 619-631.  http://dx.doi.org/10.1016/j.virs.2024.07.001

Structural and functional insights into the 2'-O-methyltransferase of SARS-CoV-2

  • Corresponding author: Yu Chen, chenyu@whu.edu.cn
  • Received Date: 24 November 2023
    Accepted Date: 02 July 2024
    Available online: 03 July 2024
  • A unique feature of coronaviruses is their utilization of self-encoded nonstructural protein 16 (nsp16), 2'-O-methyltransferase (2'-O-MTase), to cap their RNAs through ribose 2'-O-methylation modification. This process is crucial for maintaining viral genome stability, facilitating efficient translation, and enabling immune escape. Despite considerable advances in the ultrastructure of SARS-CoV-2 nsp16/nsp10, insights into its molecular mechanism have so far been limited. In this study, we systematically characterized the 2'-O-MTase activity of nsp16 in SARS-CoV-2, focusing on its dependence on nsp10 stimulation. We observed cross-reactivity between nsp16 and nsp10 in various coronaviruses due to a conserved interaction interface. However, a single residue substitution (K58T) in SARS-CoV-2 nsp10 restricted the functional activation of MERS-CoV nsp16. Furthermore, the cofactor nsp10 effectively enhanced the binding of nsp16 to the substrate RNA and the methyl donor S-adenosyl-l-methionine (SAM). Mechanistically, His-80, Lys-93, and Gly-94 of nsp10 interacted with Asp-102, Ser-105, and Asp-106 of nsp16, respectively, thereby effectively stabilizing the SAM binding pocket. Lys-43 of nsp10 interacted with Lys-38 and Gly-39 of nsp16 to dynamically regulate the RNA binding pocket and facilitate precise binding of RNA to the nsp16/nsp10 complex. By assessing the conformational epitopes of nsp16/nsp10 complex, we further determined the critical residues involved in 2'-O-MTase activity. Additionally, we utilized an in vitro biochemical platform to screen potential inhibitors targeting 2'-O-MTase activity. Overall, our results significantly enhance the understanding of viral 2'-O methylation process and mechanism, providing valuable targets for antiviral drug development.

  • 加载中
  • 10.1016j.virs.2024.07.001-ESM.docx
    1. ahola, T., Laakkonen, P., Vihinen, H., Kaariainen, L. 1997. Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J Virol, 71, 392-397.

    2. Aouadi, W., Blanjoie, A., Vasseur, J. J., Debart, F., Canard, B., Decroly, E. 2017. Binding of the Methyl Donor S-Adenosyl-l-Methionine to Middle East Respiratory Syndrome Coronavirus 2'-O-Methyltransferase nsp16 Promotes Recruitment of the Allosteric Activator nsp10. J Virol, 91, e02217-16.

    3. Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E. J., Canard, B., Decroly, E. 2010. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog, 6, e1000863.

    4. Brecher, M. B., Li, Z., Zhang, J., Chen, H., Lin, Q., Liu, B., Li, H. 2015. Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase. Protein Sci, 24, 117-128.

    5. Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., Guo, D. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci U S A, 106, 3484-3489.

    6. Chen, Y., Guo, D. 2016. Molecular mechanisms of coronavirus RNA capping and methylation. Virol Sin, 31, 3-11.

    7. Chen, Y., Liu, Q., Guo, D. 2020. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol, 92, 418-423.

    8. Chen, Y., Liu, Q., Zhou, L., Zhou, Y., Yan, H., Lan, K. 2022. Emerging SARS-CoV-2 variants: Why, how, and what's next? Cell Insight, 1, 100029.

    9. Chen, Y., Su, C., Ke, M., Jin, X., Xu, L., Zhang, Z., Wu, A., Sun, Y., Yang, Z., Tien, P., Ahola, T., Liang, Y., Liu, X., Guo, D. 2011. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2'-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog, 7, e1002294.

    10. Chrebet, G. L., Wisniewski, D., Perkins, A. L., Deng, Q., Kurtz, M. B., Marcy, A., Parent, S. A. 2005. Cell-based assays to detect inhibitors of fungal mRNA capping enzymes and characterization of sinefungin as a cap methyltransferase inhibitor. J Biomol Screen, 10, 355-364.

    11. Daffis, S., Szretter, K. J., Schriewer, J., Li, J., Youn, S., Errett, J., Lin, T. Y., Schneller, S., Zust, R., Dong, H., Thiel, V., Sen, G. C., Fensterl, V., Klimstra, W. B., Pierson, T. C., Buller, R. M., Gale, M., Jr., Shi, P. Y., Diamond, M. S. 2010. 2'-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 468, 452-456.

    12. Decroly, E., Debarnot, C., Ferron, F., Bouvet, M., Coutard, B., Imbert, I., Gluais, L., Papageorgiou, N., Sharff, A., Bricogne, G., Ortiz-Lombardia, M., Lescar, J., Canard, B. 2011a. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2'-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog, 7, e1002059.

    13. Decroly, E., Ferron, F., Lescar, J., Canard, B. 2011b. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol, 10, 51-65.

    14. DECROLY, E., IMBERT, I., COUTARD, B., BOUVET, M., SELISKO, B., ALVAREZ, K., GORBALENYA, A. E., SNIJDER, E. J. & CANARD, B. 2008a. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity. J Virol, 82, 8071-8084.

    15. Decroly, E., Imbert, I., Coutard, B., Bouvet, M. L., Selisko, B., Alvarez, K., Gorbalenya, A. E., Snijder, E. J., Canard, B. 2008b. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity. Journal of Virology, 82, 8071-8084.

    16. Deng, J., Yang, S., Li, Y., Tan, X., Liu, J., Yu, Y., Ding, Q., Fan, C., Wang, H., Chen, X., Liu, Q., Guo, X., Gong, F., Zhou, L., Chen, Y. 2024. Natural evidence of coronaviral 2'-O-methyltransferase activity affecting viral pathogenesis via improved substrate RNA binding. Signal Transduct Target Ther, 9, 140.

    17. Dong, H., Zhang, B., Shi, P. Y. 2008. Flavivirus methyltransferase: a novel antiviral target. Antiviral Res, 80, 1-10.

    18. Encinar, J. A., Menendez, J. A. 2020. Potential Drugs Targeting Early Innate Immune Evasion of SARS-Coronavirus 2 via 2'-O-Methylation of Viral RNA. Viruses, 12, 525.

    19. Ferron, F., Decroly, E., Selisko, B., Canard, B. 2012. The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res, 96, 21-31.

    20. Hager, J., Staker, B. L., Bugl, H., Jakob, U. 2002. Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem, 277, 41978-41986.

    21. Hodel, A. E., Gershon, P. D., Quiocho, F. A. 1998. Structural basis for sequence-nonspecific recognition of 5'-capped mRNA by a cap-modifying enzyme. Mol Cell, 1, 443-447.

    22. Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K. K., Schlee, M., Endres, S., Hartmann, G. 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science, 314, 994-997.

    23. Huang, Y., Xie, J., Guo, Y., Sun, W., He, Y., Liu, K., Yan, J., Tao, A., Zhong, N. 2021. SARS-CoV-2: Origin, Intermediate Host and Allergenicity Features and Hypotheses. Healthcare (Basel), 9, 1132.

    24. Ivanov, K. A., Ziebuhr, J. 2004. Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5'-triphosphatase activities. J Virol, 78, 7833-7838.

    25. Jeffery, D. R., Roth, J. A. 1987. Kinetic Reaction-Mechanism for Magnesium Binding To Membrane-Bound and Soluble Catechol O-Methyltransferase. Biochemistry, 26, 2955-2958.

    26. Joseph, J. S., Saikatendu, K. S., Subramanian, V., Neuman, B. W., Brooun, A., Griffith, M., Moy, K., Yadav, M. K., Velasquez, J., Buchmeier, M. J., Stevens, R. C., Kuhn, P. 2006. Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J Virol, 80, 7894-7901.

    27. Ke, M., Chen, Y., Wu, A., Sun, Y., Su, C., Wu, H., Jin, X., Tao, J., Wang, Y., Ma, X., Pan, J. A., Guo, D. 2012. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2'-O-methyltransferase activity of nsp10/nsp16 complex. Virus Res, 167, 322-328.

    28. Krafcikova, P., Silhan, J., Nencka, R., Boura, E. 2020. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat Commun, 11, 3717.

    29. Krishna, S. S., Majumdar, I., Grishin, N. V. 2003. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res, 31, 532-550.

    30. Lin, S., Chen, H., Ye, F., Chen, Z., Yang, F., Zheng, Y., Cao, Y., Qiao, J., Yang, S., Lu, G. 2020. Crystal structure of SARS-CoV-2 nsp10/nsp16 2'-O-methylase and its implication on antiviral drug design. Signal Transduct Target Ther, 5, 131.

    31. Liu, H., Kiledjian, M. 2006. Decapping the message: a beginning or an end. Biochem Soc Trans, 34, 35-38.

    32. Lugari, A., Betzi, S., Decroly, E., Bonnaud, E., Hermant, A., Guillemot, J. C., Debarnot, C., Borg, J. P., Bouvet, M., Canard, B., Morelli, X., Lecine, P. 2010. Molecular mapping of the RNA Cap 2'-O-methyltransferase activation interface between severe acute respiratory syndrome coronavirus nsp10 and nsp16. J Biol Chem, 285, 33230-33241.

    33. Mahalapbutr, P., Kongtaworn, N., Rungrotmongkol, T. 2020. Structural insight into the recognition of S-adenosyl-L-homocysteine and sinefungin in SARS-CoV-2 Nsp16/Nsp10 RNA cap 2'-O-Methyltransferase. Comput Struct Biotechnol J, 18, 2757-2765.

    34. Martin, J.L., Mcmillan, F.M. 2002. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol, 12, 783-793.

    35. Maurya, S. K., Maurya, A. K., Mishra, N., Siddique, H. R. 2020. Virtual screening, ADME/T, and binding free energy analysis of anti-viral, anti-protease, and anti-infectious compounds against NSP10/NSP16 methyltransferase and main protease of SARS CoV-2. J Recept Signal Transduct Res, 40, 605-612.

    36. Nallagatla, S. R., Toroney, R., Bevilacqua, P. C. 2008. A brilliant disguise for self RNA: 5'-end and internal modifications of primary transcripts suppress elements of innate immunity. RNA Biol, 5, 140-144.

    37. Park, G. J., Osinski, A., Hernandez, G., Eitson, J. L., Majumdar, A., Tonelli, M., Henzler-Wildman, K., Pawlowski, K., Chen, Z., Li, Y., Schoggins, J. W., Tagliabracci, V. S. 2022. The mechanism of RNA capping by SARS-CoV-2. Nature, 609, 793-800.

    38. Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., Weng, Z. 2014. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 30, 1771-1773.

    39. Pradhan, M., Esteve, P. O., Chin, H. G., Samaranayke, M., Kim, G. D., Pradhan, S. 2008. CXXC domain of human DNMT1 is essential for enzymatic activity. Biochemistry, 47, 10000-10009.

    40. Pugh, C. S., Borchardt, R. T. 1982. Effects of S-adenosylhomocysteine analogues on vaccinia viral messenger ribonucleic acid synthesis and methylation. Biochemistry, 21, 1535-1541.

    41. Ray, D., Shah, A., Tilgner, M., Guo, Y., Zhao, Y., Dong, H., Deas, T. S., Zhou, Y., Li, H., Shi, P. Y. 2006. West Nile virus 5'-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5. J Virol, 80, 8362-8370.

    42. Rehwinkel, J., Tan, C. P., Goubau, D., Schulz, O., Pichlmair, A., Bier, K., Robb, N., Vreede, F., Barclay, W., Fodor, E., Reis E Sousa, C. 2010. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell, 140, 397-408.

    43. Robert, X., Gouet, P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res, 42, W320-W324.

    44. Rogstam, A., Nyblom, M., Christensen, S., Sele, C., Talibov, V. O., Lindvall, T., Rasmussen, A. A., Andre, I., Fisher, Z., Knecht, W., Kozielski, F. 2020. Crystal Structure of Non-Structural Protein 10 from Severe Acute Respiratory Syndrome Coronavirus-2. Int J Mol Sci, 21, 7375.

    45. Rosas-Lemus, M., Minasov, G., Shuvalova, L., Inniss, N. L., Kiryukhina, O., Brunzelle, J., Satchell, K. J. F. 2020. High-resolution structures of the SARS-CoV-2 2'-O-methyltransferase reveal strategies for structure-based inhibitor design. Sci Signal, 13, eabe1202.

    46. Russ, A., Wittmann, S., Tsukamoto, Y., Herrmann, A., Deutschmann, J., Lagisquet, J., Ensser, A., Kato, H., Gramberg, T. 2022. Nsp16 shields SARS-CoV-2 from efficient MDA5 sensing and IFIT1-mediated restriction. EMBO Rep, 23, e55648.

    47. Schindewolf, C., Lokugamage, K., Vu, M. N., Johnson, B. A., Scharton, D., Plante, J. A., Kalveram, B., Crocquet-Valdes, P. A., Sotcheff, S., Jaworski, E., Alvarado, R. E., Debbink, K., Daugherty, M. D., Weaver, S. C., Routh, A. L., Walker, D. H., Plante, K. S., Menachery, V. D. 2023. SARS-CoV-2 Uses Nonstructural Protein 16 To Evade Restriction by IFIT1 and IFIT3. J Virol, 97, e0153222.

    48. Schwer, B., Lehman, K., Saha, N., Shuman, S. 2001. Characterization of the mRNA capping apparatus of Candida albicans. J Biol Chem, 276, 1857-1864.

    49. Selisko, B., Peyrane, F. F., Canard, B., Alvarez, K., Decroly, E. 2010. Biochemical characterization of the (nucleoside-2'O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides (7Me)GpppAC(n) and GpppAC(n). J Gen Virol, 91, 112-121.

    50. Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y., Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., Chen, H., Bu, Z. 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science, 368, 1016-1020.

    51. Shikauchi, Y., Saiura, A., Kubo, T., Niwa, Y., Yamamoto, J., Murase, Y., Yoshikawa, H. 2009. SALL3 interacts with DNMT3A and shows the ability to inhibit CpG island methylation in hepatocellular carcinoma. Mol Cell Biol, 29, 1944-1958.

    52. Smith, E. C., Case, J. B., Blanc, H., Isakov, O., Shomron, N., Vignuzzi, M., Denison, M. R. 2015. Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity. J Virol, 89, 6418-6426.

    53. Tazikeh-Lemeski, E., Moradi, S., Raoufi, R., Shahlaei, M., Janlou, M. A. M., Zolghadri, S. 2020. Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study. J Biomol Struct Dyn, 39, 4633-4646.

    54. Viswanathan, T., Arya, S., Chan, S. H., Qi, S., Dai, N., Misra, A., Park, J. G., Oladunni, F., Kovalskyy, D., Hromas, R. A., Martinez-Sobrido, L., Gupta, Y. K. 2020. Structural basis of RNA cap modification by SARS-CoV-2. Nat Commun, 11, 3718.

    55. Wang, D., Jiang, A., Feng, J., Li, G., Guo, D., Sajid, M., Wu, K., Zhang, Q., Ponty, Y., Will, S., Liu, F., Yu, X., Li, S., Liu, Q., Yang, X. L., Guo, M., Li, X., Chen, M., Shi, Z. L., Lan, K., Chen, Y., Zhou, Y. 2021. The SARS-CoV-2 subgenome landscape and its novel regulatory features. Mol Cell, 81, 2135-2147.e5.

    56. Wang, Y., Sun, Y., Wu, A., Xu, S., Pan, R., Zeng, C., Jin, X., Ge, X., Shi, Z., Ahola, T., Chen, Y., Guo, D. 2015. Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis. J Virol, 89, 8416-8427.

    57. Wilamowski, M., Sherrell, D. A., Minasov, G., Kim, Y., Shuvalova, L., Lavens, A., Chard, R., Maltseva, N., Jedrzejczak, R., Rosas-Lemus, M., Saint, N., Foster, I. T., Michalska, K., Satchell, K. J. F., Joachimiak, A. 2021. 2'-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography. Proc Natl Acad Sci U S A, 118, e2100170118.

    58. Woyciniuk, P., Linder, M., Scholtissek, C. 1995. The methyltransferase inhibitor Neplanocin A interferes with influenza virus replication by a mechanism different from that of 3-deazaadenosine. Virus Res, 35, 91-99.

    59. Yan, L., Ge, J., Zheng, L., Zhang, Y., Gao, Y., Wang, T., Huang, Y., Yang, Y., Gao, S., Li, M., Liu, Z., Wang, H., Li, Y., Chen, Y., Guddat, L. W., Wang, Q., Rao, Z., Lou, Z. 2021a. Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Cell, 184, 184-193. e10.

    60. Yan, L., Yang, Y., Li, M., Zhang, Y., Zheng, L., Ge, J., Huang, Y. C., Liu, Z., Wang, T., Gao, S., Zhang, R., Huang, Y. Y., Guddat, L. W., Gao, Y., Rao, Z., Lou, Z. 2021b. Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell, 184, 3474-3485. e11.

    61. Ye, Z. W., Ong, C. P., Tang, K., Fan, Y., Luo, C., Zhou, R., Luo, P., Cheng, Y., Gray, V. S., Wang, P., Chu, H., Chan, J. F., To, K. K., Chen, H., Chen, Z., Yuen, K. Y., Ling, G. S., Yuan, S., Jin, D. Y. 2022. Intranasal administration of a single dose of a candidate live attenuated vaccine derived from an NSP16-deficient SARS-CoV-2 strain confers sterilizing immunity in animals. Cell Mol Immunol, 19, 588-601.

    62. Zeng, C., Wu, A., Wang, Y., Xu, S., Tang, Y., Jin, X., Wang, S., Qin, L., Sun, Y., Fan, C., Snijder, E. J., Neuman, B. W., Chen, Y., Ahola, T., Guo, D. 2016. Identification and Characterization of a Ribose 2'-O-Methyltransferase Encoded by the Ronivirus Branch of Nidovirales. J Virol, 90, 6675-6685.

    63. Zhou, Y., Ray, D., Zhao, Y., Dong, H., Ren, S., Li, Z., Guo, Y., Bernard, K. A., Shi, P. Y., Li, H. 2007. Structure and function of flavivirus NS5 methyltransferase. J Virol, 81, 3891-3903.

    64. Ziebuhr, J. 2005. The coronavirus replicase. Curr Top Microbiol Immunol, 287, 57-94.

    65. Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B. W., Ziebuhr, J., Szretter, K. J., Baker, S. C., Barchet, W., Diamond, M. S., Siddell, S. G., Ludewig, B., Thiel, V. 2011. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol, 12, 137-143.

  • 加载中

Figures(2)

Article Metrics

Article views(486) PDF downloads(2) Cited by()

Related
Proportional views

    Structural and functional insights into the 2'-O-methyltransferase of SARS-CoV-2

      Corresponding author: Yu Chen, chenyu@whu.edu.cn
    • a. State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China;
    • b. Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, 430071, China

    Abstract: A unique feature of coronaviruses is their utilization of self-encoded nonstructural protein 16 (nsp16), 2'-O-methyltransferase (2'-O-MTase), to cap their RNAs through ribose 2'-O-methylation modification. This process is crucial for maintaining viral genome stability, facilitating efficient translation, and enabling immune escape. Despite considerable advances in the ultrastructure of SARS-CoV-2 nsp16/nsp10, insights into its molecular mechanism have so far been limited. In this study, we systematically characterized the 2'-O-MTase activity of nsp16 in SARS-CoV-2, focusing on its dependence on nsp10 stimulation. We observed cross-reactivity between nsp16 and nsp10 in various coronaviruses due to a conserved interaction interface. However, a single residue substitution (K58T) in SARS-CoV-2 nsp10 restricted the functional activation of MERS-CoV nsp16. Furthermore, the cofactor nsp10 effectively enhanced the binding of nsp16 to the substrate RNA and the methyl donor S-adenosyl-l-methionine (SAM). Mechanistically, His-80, Lys-93, and Gly-94 of nsp10 interacted with Asp-102, Ser-105, and Asp-106 of nsp16, respectively, thereby effectively stabilizing the SAM binding pocket. Lys-43 of nsp10 interacted with Lys-38 and Gly-39 of nsp16 to dynamically regulate the RNA binding pocket and facilitate precise binding of RNA to the nsp16/nsp10 complex. By assessing the conformational epitopes of nsp16/nsp10 complex, we further determined the critical residues involved in 2'-O-MTase activity. Additionally, we utilized an in vitro biochemical platform to screen potential inhibitors targeting 2'-O-MTase activity. Overall, our results significantly enhance the understanding of viral 2'-O methylation process and mechanism, providing valuable targets for antiviral drug development.

    Figure (2)  Reference (65) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return