. doi: 10.1016/j.virs.2023.10.001
Citation: Hou-Li Cai, Yao-Wei Huang. Reverse genetics systems for SARS-CoV-2: Development and applications .VIROLOGICA SINICA, 2023, 38(6) : 837-850.  http://dx.doi.org/10.1016/j.virs.2023.10.001

新冠病毒反向遗传系统:发展与应用

  • 通讯作者: 黄耀伟, yhuang@scau.edu.cn
  • 收稿日期: 2023-07-09
    录用日期: 2023-10-07
  • 严重急性呼吸综合征冠状病毒2(新冠病毒;SARS-CoV-2)引起的新冠大流行对人类健康造成了严重危害,也影响全球经济。反向遗传系统为SARS-CoV-2的科学研究提供了非常有用的帮助。研究人员通过人工操纵病毒基因组序列,可以获得经修饰的全长感染性克隆、表达报告基因的重组病毒以及能够在生物安全2级实验室操作的非感染性病毒复制子。这些工具在研究病毒的分子生物学特性、筛选抗病毒药物以及促进候选减毒活疫苗的研发方面发挥了重要作用。本文详细总结了SARS-CoV-2反向遗传系统的构建策略、发展历程和具体应用,以期能为其它冠状病毒的研究提供一定的参考。

Reverse genetics systems for SARS-CoV-2: Development and applications

  • Corresponding author: Yao-Wei Huang, yhuang@scau.edu.cn
  • Received Date: 09 July 2023
    Accepted Date: 07 October 2023
  • The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused serious harm to human health and struck a blow to global economic development. Research on SARS-CoV-2 has greatly benefited from the use of reverse genetics systems, which have been established to artificially manipulate the viral genome, generating recombinant and reporter infectious viruses or biosafety level 2 (BSL-2)-adapted non-infectious replicons with desired modifications. These tools have been instrumental in studying the molecular biological characteristics of the virus, investigating antiviral therapeutics, and facilitating the development of attenuated vaccine candidates. Here, we review the construction strategies, development, and applications of reverse genetics systems for SARS-CoV-2, which may be applied to other CoVs as well.

  • 加载中
    1. Abdoli M, Shafaati M, Ghamsari LK, Abdoli A. 2022. Intranasal administration of cold-adapted live-attenuated sars-cov-2 candidate vaccine confers protection against sars-cov-2. Virus Res, 319: 198857.

    2. Almazan F, Galan C, Enjuanes L. 2004. The nucleoprotein is required for efficient coronavirus genome replication. J Virol, 78: 12683-12688.

    3. Almazan F, Sola I, Zuniga S, Marquez-Jurado S, Morales L, Becares M, Enjuanes L. 2014. Coronavirus reverse genetic systems: Infectious clones and replicons. Virus Res, 189: 262-270.

    4. Almazan F, DeDiego ML, Sola I, Zuniga S, Nieto-Torres JL, Marquez-Jurado S, Andres G, Enjuanes L. 2013. Engineering a replication-competent, propagation-defective middle east respiratory syndrome coronavirus as a vaccine candidate. mBio, 4: e00650-00613.

    5. Almazan F, Dediego ML, Galan C, Escors D, Alvarez E, Ortego J, Sola I, Zuniga S, Alonso S, Moreno JL, Nogales A, Capiscol C, Enjuanes L. 2006. Construction of a severe acute respiratory syndrome coronavirus infectious cdna clone and a replicon to study coronavirus rna synthesis. J Virol, 80: 10900-10906.

    6. Almazán F, González JM, Pénzes Z, Izeta A, Calvo E, Plana-Durán J, Enjuanes L. 2000. Engineering the largest rna virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A, 97: 5516-5521.

    7. Amarilla AA, Sng JDJ, Parry R, Deerain JM, Potter JR, Setoh YX, Rawle DJ, Le TT, Modhiran N, Wang X, Peng NYG, Torres FJ, Pyke A, Harrison JJ, Freney ME, Liang B, McMillan CLD, Cheung STM, Guevara D, Hardy JM, Bettington M, Muller DA, Coulibaly F, Moore F, Hall RA, Young PR, Mackenzie JM, Hobson-Peters J, Suhrbier A, Watterson D, Khromykh AA. 2021. A versatile reverse genetics platform for sars-cov-2 and other positive-strand rna viruses. Nat Commun, 12: 3431.

    8. Aubry F, Nougairede A, Gould EA, de Lamballerie X. 2015. Flavivirus reverse genetic systems, construction techniques and applications: A historical perspective. Antiviral Res, 114: 67-85.

    9. Baric RS, Sims AC. 2005. Development of mouse hepatitis virus and sars-cov infectious cdna constructs. Curr Top Microbiol Immunol, 287: 229-252.

    10. Baric RS, Fu K, Schaad MC, Stohlman SA. 1990. Establishing a genetic recombination map for murine coronavirus strain a59 complementation groups. Virology, 177: 646-656.

    11. Bartenschlager R. 2002. Hepatitis c virus replicons: Potential role for drug development. Nat Rev Drug Discov, 1: 911-916.

    12. Barut GT, Halwe NJ, Taddeo A, Kelly JN, Schon J, Ebert N, Ulrich L, Devisme C, Steiner S, Trueb BS, Hoffmann B, Veiga IB, Leborgne NGF, Moreira EA, Breithaupt A, Wylezich C, Hoper D, Wernike K, Godel A, Thomann L, Fluck V, Stalder H, Brugger M, Esteves BIO, Zumkehr B, Beilleau G, Kratzel A, Schmied K, Ochsenbein S, Lang RM, Wider M, Machahua C, Dorn P, Marti TM, Funke-Chambour M, Rauch A, Widera M, Ciesek S, Dijkman R, Hoffmann D, Alves MP, Benarafa C, Beer M, Thiel V. 2022. The spike gene is a major determinant for the sars-cov-2 omicron-ba.1 phenotype. Nat Commun, 13: 5929.

    13. Boyer PL, Ferris AL, Hughes SH. 1992. Mutational analysis of the fingers domain of human immunodeficiency virus type 1 reverse transcriptase. J Virol, 66: 7533-7537.

    14. Chen DY, Chin CV, Kenney D, Tavares AH, Khan N, Conway HL, Liu G, Choudhary MC, Gertje HP, O'Connell AK, Adams S, Kotton DN, Herrmann A, Ensser A, Connor JH, Bosmann M, Li JZ, Gack MU, Baker SC, Kirchdoerfer RN, Kataria Y, Crossland NA, Douam F, Saeed M. 2023. Spike and nsp6 are key determinants of sars-cov-2 omicron ba.1 attenuation. Nature, 615: 143-150.

    15. Chiem K, Morales Vasquez D, Park JG, Platt RN, Anderson T, Walter MR, Kobie JJ, Ye C, Martinez-Sobrido L. 2021a. Generation and characterization of recombinant sars-cov-2 expressing reporter genes. J Virol, 95.

    16. Chiem K, Park JG, Morales Vasquez D, Plemper RK, Torrelles JB, Kobie JJ, Walter MR, Ye C, Martinez-Sobrido L. 2022. Monitoring sars-cov-2 infection using a double reporter-expressing virus. Microbiol Spectr, 10: e0237922.

    17. Chiem K, Morales Vasquez D, Silvas JA, Park JG, Piepenbrink MS, Sourimant J, Lin MJ, Greninger AL, Plemper RK, Torrelles JB, Walter MR, de la Torre JC, Kobie JK, Ye C, Martinez-Sobrido L. 2021b. A bifluorescent-based assay for the identification of neutralizing antibodies against sars-cov-2 variants of concern in vitro and in vivo. J Virol, 95: e0112621.

    18. Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S. 2008. Virus attenuation by genome-scale changes in codon pair bias. Science, 320: 1784-1787.

    19. Curtis KM, Yount B, Baric RS. 2002. Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J Virol, 76: 1422-1434.

    20. Dinnon KH, 3rd, Leist SR, Schafer A, Edwards CE, Martinez DR, Montgomery SA, West A, Yount BL, Jr., Hou YJ, Adams LE, Gully KL, Brown AJ, Huang E, Bryant MD, Choong IC, Glenn JS, Gralinski LE, Sheahan TP, Baric RS. 2020. A mouse-adapted model of sars-cov-2 to test covid-19 countermeasures. Nature, 586: 560-566.

    21. Dubensky TW, Jr., Driver DA, Polo JM, Belli BA, Latham EM, Ibanez CE, Chada S, Brumm D, Banks TA, Mento SJ, Jolly DJ, Chang SM. 1996. Sindbis virus DNA-based expression vectors: Utility for in vitro and in vivo gene transfer. J Virol, 70: 508-519.

    22. Edmonds J, van Grinsven E, Prow N, Bosco-Lauth A, Brault AC, Bowen RA, Hall RA, Khromykh AA. 2013. A novel bacterium-free method for generation of flavivirus infectious DNA by circular polymerase extension reaction allows accurate recapitulation of viral heterogeneity. J Virol, 87: 2367-2372.

    23. Fahnøe U, Pham LV, Fernandez-Antunez C, Costa R, Rivera-Rangel LR, Galli A, Feng S, Mikkelsen LS, Gottwein JM, Scheel TKH, Ramirez S, Bukh J. 2022. Versatile sars-cov-2 reverse-genetics systems for the study of antiviral resistance and replication. Viruses, 14.

    24. Feng X, Zhang X, Jiang S, Tang Y, Cheng C, Krishna PA, Wang X, Dai J, Zeng J, Xia T, Zhao D. 2022. A DNA-based non-infectious replicon system to study sars-cov-2 rna synthesis. Comput Struct Biotechnol J, 20: 5193-5202.

    25. Fernandes RS, Freire M, Bueno RV, Godoy AS, Gil L, Oliva G. 2020. Reporter replicons for antiviral drug discovery against positive single-stranded rna viruses. Viruses, 12.

    26. Furusawa Y, Yamayoshi S, Kawaoka Y. 2023. The accuracy of reverse genetics systems for sars-cov-2: Circular polymerase extension reaction versus bacterial artificial chromosome. Influenza Other Respir Viruses, 17: e13109.

    27. Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. 2006. Nidovirales: Evolving the largest rna virus genome. Virus Res, 117: 17-37.

    28. Graham RL, Deming DJ, Deming ME, Yount BL, Baric RS. 2018. Evaluation of a recombination-resistant coronavirus as a broadly applicable, rapidly implementable vaccine platform. Commun Biol, 1: 179.

    29. Hannemann H. 2020. Viral replicons as valuable tools for drug discovery. Drug Discov Today, 25: 1026-1033.

    30. He X, Quan S, Xu M, Rodriguez S, Goh SL, Wei J, Fridman A, Koeplinger KA, Carroll SS, Grobler JA, Espeseth AS, Olsen DB, Hazuda DJ, Wang D. 2021. Generation of sars-cov-2 reporter replicon for high-throughput antiviral screening and testing. Proc Natl Acad Sci U S A, 118.

    31. Herrmann A, Jungnickl D, Cordsmeier A, Peter AS, Uberla K, Ensser A. 2021. Cloning of a passage-free sars-cov-2 genome and mutagenesis using red recombination. Int J Mol Sci, 22.

    32. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. 2020. Sars-cov-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell, 181: 271-280 e278.

    33. Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Dinnon KH, 3rd, Kato T, Lee RE, Yount BL, Mascenik TM, Chen G, Olivier KN, Ghio A, Tse LV, Leist SR, Gralinski LE, Schäfer A, Dang H, Gilmore R, Nakano S, Sun L, Fulcher ML, Livraghi-Butrico A, Nicely NI, Cameron M, Cameron C, Kelvin DJ, de Silva A, Margolis DM, Markmann A, Bartelt L, Zumwalt R, Martinez FJ, Salvatore SP, Borczuk A, Tata PR, Sontake V, Kimple A, Jaspers I, O'Neal WK, Randell SH, Boucher RC, Baric RS. 2020. Sars-cov-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell, 182: 429-446.e414.

    34. Hu B, Guo H, Zhou P, Shi ZL. 2021. Characteristics of sars-cov-2 and covid-19. Nat Rev Microbiol, 19: 141-154.

    35. Jin YY, Lin H, Cao L, Wu WC, Ji Y, Du L, Jiang Y, Xie Y, Tong K, Xing F, Zheng F, Shi M, Pan JA, Peng X, Guo D. 2021. A convenient and biosafe replicon with accessory genes of sars-cov-2 and its potential application in antiviral drug discovery. Virol Sin, 36: 913-923.

    36. Johnson BA, Zhou Y, Lokugamage KG, Vu MN, Bopp N, Crocquet-Valdes PA, Kalveram B, Schindewolf C, Liu Y, Scharton D, Plante JA, Xie X, Aguilar P, Weaver SC, Shi PY, Walker DH, Routh AL, Plante KS, Menachery VD. 2022. Nucleocapsid mutations in sars-cov-2 augment replication and pathogenesis. PLoS Pathog, 18: e1010627.

    37. Johnson BA, Xie X, Bailey AL, Kalveram B, Lokugamage KG, Muruato A, Zou J, Zhang X, Juelich T, Smith JK, Zhang L, Bopp N, Schindewolf C, Vu M, Vanderheiden A, Winkler ES, Swetnam D, Plante JA, Aguilar P, Plante KS, Popov V, Lee B, Weaver SC, Suthar MS, Routh AL, Ren P, Ku Z, An Z, Debbink K, Diamond MS, Shi PY, Freiberg AN, Menachery VD. 2021. Loss of furin cleavage site attenuates sars-cov-2 pathogenesis. Nature, 591: 293-299.

    38. Ju X, Zhu Y, Wang Y, Li J, Zhang J, Gong M, Ren W, Li S, Zhong J, Zhang L, Zhang QC, Zhang R, Ding Q. 2021. A novel cell culture system modeling the sars-cov-2 life cycle. PLoS Pathog, 17: e1009439.

    39. Kim BK, Choi WS, Jeong JH, Oh S, Park JH, Yun YS, Min SC, Kang DH, Kim EG, Ryu H, Kim HK, Baek YH, Choi YK, Song MS. 2023. A rapid method for generating infectious sars-cov-2 and variants using mutagenesis and circular polymerase extension cloning. Microbiol Spectr, 11: e0338522.

    40. Kim Y, Jedrzejczak R, Maltseva NI, Wilamowski M, Endres M, Godzik A, Michalska K, Joachimiak A. 2020. Crystal structure of nsp15 endoribonuclease nendou from sars-cov-2. Protein Sci, 29: 1596-1605.

    41. Kimura I, Yamasoba D, Tamura T, Nao N, Suzuki T, Oda Y, Mitoma S, Ito J, Nasser H, Zahradnik J, Uriu K, Fujita S, Kosugi Y, Wang L, Tsuda M, Kishimoto M, Ito H, Suzuki R, Shimizu R, Begum MM, Yoshimatsu K, Kimura KT, Sasaki J, Sasaki-Tabata K, Yamamoto Y, Nagamoto T, Kanamune J, Kobiyama K, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Shirakawa K, Takaori-Kondo A, Kuramochi J, Schreiber G, Ishii KJ, Genotype to Phenotype Japan C, Hashiguchi T, Ikeda T, Saito A, Fukuhara T, Tanaka S, Matsuno K, Sato K. 2022. Virological characteristics of the sars-cov-2 omicron ba.2 subvariants, including ba.4 and ba.5. Cell, 185: 3992-4007 e3916.

    42. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B, Hastie KM, Parker MD, Partridge DG, Evans CM, Freeman TM, de Silva TI, McDanal C, Perez LG, Tang H, Moon-Walker A, Whelan SP, LaBranche CC, Saphire EO, Montefiori DC. 2020. Tracking changes in sars-cov-2 spike: Evidence that d614g increases infectivity of the covid-19 virus. Cell, 182: 812-827.e819.

    43. Kotaki T, Xie X, Shi PY, Kameoka M. 2021. A pcr amplicon-based sars-cov-2 replicon for antiviral evaluation. Sci Rep, 11: 2229.

    44. Kouprina N, Larionov V. 2008. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast saccharomyces cerevisiae. Nat Protoc, 3: 371-377.

    45. Kummerer BM. 2018. Establishment and application of flavivirus replicons. Adv Exp Med Biol, 1062: 165-173.

    46. Kunec D, Osterrieder N, Trimpert J. 2022. Synthetically recoded virus scpd9 - a tool to accelerate sars-cov-2 research under biosafety level 2 conditions. Comput Struct Biotechnol J, 20: 4376-4380.

    47. Kurhade C, Xie X, Shi PY. 2023. Reverse genetic systems of sars-cov-2 for antiviral research. Antiviral Res, 210: 105486.

    48. Lednicky JA, Tagliamonte MS, White SK, Elbadry MA, Alam MM, Stephenson CJ, Bonny TS, Loeb JC, Telisma T, Chavannes S, Ostrov DA, Mavian C, Beau De Rochars VM, Salemi M, Morris JG, Jr. 2021. Independent infections of porcine deltacoronavirus among haitian children. Nature, 600: 133-137.

    49. Leung K, Shum MH, Leung GM, Lam TT, Wu JT. 2021. Early transmissibility assessment of the n501y mutant strains of sars-cov-2 in the united kingdom, october to november 2020. Euro Surveill, 26.

    50. Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, Fan J, Song L, Tong Y, Fan H. 2022. Covid-19 vaccine development: Milestones, lessons and prospects. Signal Transduct Target Ther, 7: 146.

    51. Lin JW, Tang C, Wei HC, Du B, Chen C, Wang M, Zhou Y, Yu MX, Cheng L, Kuivanen S, Ogando NS, Levanov L, Zhao Y, Li CL, Zhou R, Li Z, Zhang Y, Sun K, Wang C, Chen L, Xiao X, Zheng X, Chen SS, Zhou Z, Yang R, Zhang D, Xu M, Song J, Wang D, Li Y, Lei S, Zeng W, Yang Q, He P, Zhang Y, Zhou L, Cao L, Luo F, Liu H, Wang L, Ye F, Zhang M, Li M, Fan W, Li X, Li K, Ke B, Xu J, Yang H, He S, Pan M, Yan Y, Zha Y, Jiang L, Yu C, Liu Y, Xu Z, Li Q, Jiang Y, Sun J, Hong W, Wei H, Lu G, Vapalahti O, Luo Y, Wei Y, Connor T, Tan W, Snijder EJ, Smura T, Li W, Geng J, Ying B, Chen L. 2021. Genomic monitoring of sars-cov-2 uncovers an nsp1 deletion variant that modulates type i interferon response. Cell Host Microbe, 29: 489-502.e488.

    52. Lin X, Fu B, Xiong Y, Xing N, Xue W, Guo D, Zaky M, Pavani K, Kunec D, Trimpert J, Wu H. 2023. Unconventional secretion of unglycosylated orf8 is critical for the cytokine storm during sars-cov-2 infection. PLoS Pathog, 19: e1011128.

    53. Liu G, Gack MU. 2023. An optimized circular polymerase extension reaction-based method for functional analysis of sars-cov-2. Virol J, 20: 63.

    54. Liu S, Chou CK, Wu WW, Luan B, Wang TT. 2022a. Stable cell clones harboring self-replicating sars-cov-2 rnas for drug screen. J Virol, 96: e0221621.

    55. Liu S, Stauft CB, Selvaraj P, Chandrasekaran P, D'Agnillo F, Chou CK, Wu WW, Lien CZ, Meseda CA, Pedro CL, Starost MF, Weir JP, Wang TT. 2022b. Intranasal delivery of a rationally attenuated sars-cov-2 is immunogenic and protective in syrian hamsters. Nat Commun, 13: 6792.

    56. Liu Y, Liu J, Johnson BA, Xia H, Ku Z, Schindewolf C, Widen SG, An Z, Weaver SC, Menachery VD, Xie X, Shi PY. 2022c. Delta spike p681r mutation enhances sars-cov-2 fitness over alpha variant. Cell Rep, 39: 110829.

    57. Liu Y, Liu J, Plante KS, Plante JA, Xie X, Zhang X, Ku Z, An Z, Scharton D, Schindewolf C, Widen SG, Menachery VD, Shi PY, Weaver SC. 2022d. The n501y spike substitution enhances sars-cov-2 infection and transmission. Nature, 602: 294-299.

    58. Liu Y, Zhang X, Liu J, Xia H, Zou J, Muruato AE, Periasamy S, Kurhade C, Plante JA, Bopp NE, Kalveram B, Bukreyev A, Ren P, Wang T, Menachery VD, Plante KS, Xie X, Weaver SC, Shi PY. 2022e. A live-attenuated sars-cov-2 vaccine candidate with accessory protein deletions. Nat Commun, 13: 4337.

    59. Lo MK, Tilgner M, Shi PY. 2003. Potential high-throughput assay for screening inhibitors of west nile virus replication. J Virol, 77: 12901-12906.

    60. Lohmann V, Körner F, Koch J, Herian U, Theilmann L, Bartenschlager R. 1999. Replication of subgenomic hepatitis c virus rnas in a hepatoma cell line. Science, 285: 110-113.

    61. Luo Y, Yu F, Zhou M, Liu Y, Xia B, Zhang X, Liu J, Zhang J, Du Y, Li R, Wu L, Zhang X, Pan T, Guo D, Peng T, Zhang H. 2021. Engineering a reliable and convenient sars-cov-2 replicon system for analysis of viral rna synthesis and screening of antiviral inhibitors. mBio, 12.

    62. Makino S, Keck JG, Stohlman SA, Lai MM. 1986. High-frequency rna recombination of murine coronaviruses. J Virol, 57: 729-737.

    63. Malicoat J, Manivasagam S, Zuñiga S, Sola I, McCabe D, Rong L, Perlman S, Enjuanes L, Manicassamy B. 2022. Development of a single-cycle infectious sars-cov-2 virus replicon particle system for use in biosafety level 2 laboratories. J Virol, 96: e0183721.

    64. McBride R, van Zyl M, Fielding BC. 2014. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6: 2991-3018.

    65. Melade J, Piorkowski G, Touret F, Fourie T, Driouich JS, Cochin M, Bouzidi HS, Coutard B, Nougairede A, de Lamballerie X. 2022. A simple reverse genetics method to generate recombinant coronaviruses. EMBO Rep, 23: e53820.

    66. Mueller S, Coleman JR, Papamichail D, Ward CB, Nimnual A, Futcher B, Skiena S, Wimmer E. 2010. Live attenuated influenza virus vaccines by computer-aided rational design. Nat Biotechnol, 28: 723-726.

    67. Muruato A, Vu MN, Johnson BA, Davis-Gardner ME, Vanderheiden A, Lokugamage K, Schindewolf C, Crocquet-Valdes PA, Langsjoen RM, Plante JA, Plante KS, Weaver SC, Debbink K, Routh AL, Walker D, Suthar MS, Shi PY, Xie X, Menachery VD. 2021. Mouse-adapted sars-cov-2 protects animals from lethal sars-cov challenge. PLoS Biol, 19: e3001284.

    68. Nguyen HT, Falzarano D, Gerdts V, Liu Q. 2021. Construction of a noninfectious sars-cov-2 replicon for antiviral-drug testing and gene function studies. J Virol, 95: e0068721.

    69. Nouailles G, Adler JM, Pennitz P, Peidli S, Teixeira Alves LG, Baumgardt M, Bushe J, Voss A, Langenhagen A, Langner C, Martin Vidal R, Pott F, Kazmierski J, Ebenig A, Lange MV, Muhlebach MD, Goekeri C, Simmons S, Xing N, Abdelgawad A, Herwig S, Cichon G, Niemeyer D, Drosten C, Goffinet C, Landthaler M, Bluthgen N, Wu H, Witzenrath M, Gruber AD, Praktiknjo SD, Osterrieder N, Wyler E, Kunec D, Trimpert J. 2023. Live-attenuated vaccine scpd9 elicits superior mucosal and systemic immunity to sars-cov-2 variants in hamsters. Nat Microbiol, 8: 860-874.

    70. Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC, Snijder EJ. 2020. The enzymatic activity of the nsp14 exoribonuclease is critical for replication of mers-cov and sars-cov-2. J Virol, 94.

    71. Ong CP, Ye ZW, Tang K, Liang R, Xie Y, Zhang H, Qin Z, Sun H, Wang TY, Cheng Y, Chu H, Chan JF, Jin DY, Yuan S. 2023. Comparative analysis of sars-cov-2 omicron ba.2.12.1 and ba.5.2 variants. J Med Virol, 95: e28326.

    72. Osada N, Kohara A, Yamaji T, Hirayama N, Kasai F, Sekizuka T, Kuroda M, Hanada K. 2014. The genome landscape of the african green monkey kidney-derived vero cell line. DNA Res, 21: 673-683.

    73. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE, Zou J, Fontes-Garfias CR, Mirchandani D, Scharton D, Bilello JP, Ku Z, An Z, Kalveram B, Freiberg AN, Menachery VD, Xie X, Plante KS, Weaver SC, Shi PY. 2021. Spike mutation d614g alters sars-cov-2 fitness. Nature, 592: 116-121.

    74. Ricardo-Lax I, Luna JM, Thao TTN, Le Pen J, Yu Y, Hoffmann HH, Schneider WM, Razooky BS, Fernandez-Martinez J, Schmidt F, Weisblum Y, Trüeb BS, Berenguer Veiga I, Schmied K, Ebert N, Michailidis E, Peace A, Sánchez-Rivera FJ, Lowe SW, Rout MP, Hatziioannou T, Bieniasz PD, Poirier JT, MacDonald MR, Thiel V, Rice CM. 2021. Replication and single-cycle delivery of sars-cov-2 replicons. Science, 374: 1099-1106.

    75. Rihn SJ, Merits A, Bakshi S, Turnbull ML, Wickenhagen A, Alexander AJT, Baillie C, Brennan B, Brown F, Brunker K, Bryden SR, Burness KA, Carmichael S, Cole SJ, Cowton VM, Davies P, Davis C, De Lorenzo G, Donald CL, Dorward M, Dunlop JI, Elliott M, Fares M, da Silva Filipe A, Freitas JR, Furnon W, Gestuveo RJ, Geyer A, Giesel D, Goldfarb DM, Goodman N, Gunson R, Hastie CJ, Herder V, Hughes J, Johnson C, Johnson N, Kohl A, Kerr K, Leech H, Lello LS, Li K, Lieber G, Liu X, Lingala R, Loney C, Mair D, McElwee MJ, McFarlane S, Nichols J, Nomikou K, Orr A, Orton RJ, Palmarini M, Parr YA, Pinto RM, Raggett S, Reid E, Robertson DL, Royle J, Cameron-Ruiz N, Shepherd JG, Smollett K, Stewart DG, Stewart M, Sugrue E, Szemiel AM, Taggart A, Thomson EC, Tong L, Torrie LS, Toth R, Varjak M, Wang S, Wilkinson SG, Wyatt PG, Zusinaite E, Alessi DR, Patel AH, Zaid A, Wilson SJ, Mahalingam S. 2021. A plasmid DNA-launched sars-cov-2 reverse genetics system and coronavirus toolkit for covid-19 research. PLoS Biol, 19: e3001091.

    76. Saito A, Irie T, Suzuki R, Maemura T, Nasser H, Uriu K, Kosugi Y, Shirakawa K, Sadamasu K, Kimura I, Ito J, Wu J, Iwatsuki-Horimoto K, Ito M, Yamayoshi S, Loeber S, Tsuda M, Wang L, Ozono S, Butlertanaka EP, Tanaka YL, Shimizu R, Shimizu K, Yoshimatsu K, Kawabata R, Sakaguchi T, Tokunaga K, Yoshida I, Asakura H, Nagashima M, Kazuma Y, Nomura R, Horisawa Y, Yoshimura K, Takaori-Kondo A, Imai M, Genotype to Phenotype Japan C, Tanaka S, Nakagawa S, Ikeda T, Fukuhara T, Kawaoka Y, Sato K. 2022a. Enhanced fusogenicity and pathogenicity of sars-cov-2 delta p681r mutation. Nature, 602: 300-306.

    77. Saito A, Tamura T, Zahradnik J, Deguchi S, Tabata K, Anraku Y, Kimura I, Ito J, Yamasoba D, Nasser H, Toyoda M, Nagata K, Uriu K, Kosugi Y, Fujita S, Shofa M, Monira Begum M, Shimizu R, Oda Y, Suzuki R, Ito H, Nao N, Wang L, Tsuda M, Yoshimatsu K, Kuramochi J, Kita S, Sasaki-Tabata K, Fukuhara H, Maenaka K, Yamamoto Y, Nagamoto T, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Ueno T, Schreiber G, Takaori-Kondo A, Genotype to Phenotype Japan C, Shirakawa K, Sawa H, Irie T, Hashiguchi T, Takayama K, Matsuno K, Tanaka S, Ikeda T, Fukuhara T, Sato K. 2022b. Virological characteristics of the sars-cov-2 omicron ba.2.75 variant. Cell Host Microbe, 30: 1540-1555 e1515.

    78. Sasaki M, Toba S, Itakura Y, Chambaro HM, Kishimoto M, Tabata K, Intaruck K, Uemura K, Sanaki T, Sato A, Hall WW, Orba Y, Sawa H. 2021. Sars-cov-2 bearing a mutation at the s1/s2 cleavage site exhibits attenuated virulence and confers protective immunity. mBio, 12: e0141521.

    79. Schindewolf C, Lokugamage K, Vu MN, Johnson BA, Scharton D, Plante JA, Kalveram B, Crocquet-Valdes PA, Sotcheff S, Jaworski E, Alvarado RE, Debbink K, Daugherty MD, Weaver SC, Routh AL, Walker DH, Plante KS, Menachery VD. 2023. Sars-cov-2 uses nonstructural protein 16 to evade restriction by ifit1 and ifit3. J Virol, 97: e0153222.

    80. Schubert K, Karousis ED, Jomaa A, Scaiola A, Echeverria B, Gurzeler L-A, Leibundgut M, Thiel V, Mühlemann O, Ban N. 2020. Sars-cov-2 nsp1 binds the ribosomal mrna channel to inhibit translation. Nature Structural & Molecular Biology, 27: 959-966.

    81. Shi FS, Yu Y, Li YL, Cui L, Zhao Z, Wang M, Wang B, Zhang R, Huang YW. 2022. Expression profile and localization of sars-cov-2 nonstructural replicase proteins in infected cells. Microbiol Spectr, 10: e0074422.

    82. Silvas JA, Vasquez DM, Park JG, Chiem K, Allué-Guardia A, Garcia-Vilanova A, Platt RN, Miorin L, Kehrer T, Cupic A, Gonzalez-Reiche AS, Bakel HV, García-Sastre A, Anderson T, Torrelles JB, Ye C, Martinez-Sobrido L. 2021. Contribution of sars-cov-2 accessory proteins to viral pathogenicity in k18 human ace2 transgenic mice. J Virol, 95: e0040221.

    83. Sooknanan R, Howes M, Read L, Malek LT. 1994. Fidelity of nucleic acid amplification with avian myeloblastosis virus reverse transcriptase and t7 rna polymerase. Biotechniques, 17: 1077-1080, 1083-1075.

    84. St-Jean JR, Desforges M, Almazán F, Jacomy H, Enjuanes L, Talbot PJ. 2006. Recovery of a neurovirulent human coronavirus oc43 from an infectious cdna clone. J Virol, 80: 3670-3674.

    85. Suzuki R, Yamasoba D, Kimura I, Wang L, Kishimoto M, Ito J, Morioka Y, Nao N, Nasser H, Uriu K, Kosugi Y, Tsuda M, Orba Y, Sasaki M, Shimizu R, Kawabata R, Yoshimatsu K, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Genotype to Phenotype Japan C, Sawa H, Ikeda T, Irie T, Matsuno K, Tanaka S, Fukuhara T, Sato K. 2022. Attenuated fusogenicity and pathogenicity of sars-cov-2 omicron variant. Nature, 603: 700-705.

    86. Syed AM, Taha TY, Tabata T, Chen IP, Ciling A, Khalid MM, Sreekumar B, Chen PY, Hayashi JM, Soczek KM, Ott M, Doudna JA. 2021. Rapid assessment of sars-cov-2-evolved variants using virus-like particles. Science, 374: 1626-1632.

    87. Taha TY, Chen IP, Hayashi JM, Tabata T, Walcott K, Kimmerly GR, Syed AM, Ciling A, Suryawanshi RK, Martin HS, Bach BH, Tsou CL, Montano M, Khalid MM, Sreekumar BK, Renuka Kumar G, Wyman S, Doudna JA, Ott M. 2023. Rapid assembly of sars-cov-2 genomes reveals attenuation of the omicron ba.1 variant through nsp6. Nat Commun, 14: 2308.

    88. Tanaka T, Saito A, Suzuki T, Miyamoto Y, Takayama K, Okamoto T, Moriishi K. 2022. Establishment of a stable sars-cov-2 replicon system for application in high-throughput screening. Antiviral Res, 199: 105268.

    89. Thi Nhu Thao T, Labroussaa F, Ebert N, V'Kovski P, Stalder H, Portmann J, Kelly J, Steiner S, Holwerda M, Kratzel A, Gultom M, Schmied K, Laloli L, Husser L, Wider M, Pfaender S, Hirt D, Cippa V, Crespo-Pomar S, Schroder S, Muth D, Niemeyer D, Corman VM, Muller MA, Drosten C, Dijkman R, Jores J, Thiel V. 2020. Rapid reconstruction of sars-cov-2 using a synthetic genomics platform. Nature, 582: 561-565.

    90. Tian L, Liu Q, Pei R, Chen Y, Xu C, Tang J, Sun H, Liu K, Yang Q, Yang L, Li L, Zhang Y, Zhou Y, Shan C, Hu X, Chen X, Wang Y. 2022. Comparison of viral propagation and drug response among sars-cov-2 vocs using replicons capable of recapitulating virion assembly and release. Virol Sin, 37: 695-703.

    91. Torii S, Ono C, Suzuki R, Morioka Y, Anzai I, Fauzyah Y, Maeda Y, Kamitani W, Fukuhara T, Matsuura Y. 2021. Establishment of a reverse genetics system for sars-cov-2 using circular polymerase extension reaction. Cell Rep, 35: 109014.

    92. Trimpert J, Adler JM, Eschke K, Abdelgawad A, Firsching TC, Ebert N, Thao TTN, Gruber AD, Thiel V, Osterrieder N, Kunec D. 2021a. Live attenuated virus vaccine protects against sars-cov-2 variants of concern b.1.1.7 (alpha) and b.1.351 (beta). Sci Adv, 7: eabk0172.

    93. Trimpert J, Dietert K, Firsching TC, Ebert N, Thi Nhu Thao T, Vladimirova D, Kaufer S, Labroussaa F, Abdelgawad A, Conradie A, Hofler T, Adler JM, Bertzbach LD, Jores J, Gruber AD, Thiel V, Osterrieder N, Kunec D. 2021b. Development of safe and highly protective live-attenuated sars-cov-2 vaccine candidates by genome recoding. Cell Rep, 36: 109493.

    94. V'Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. 2021. Coronavirus biology and replication: Implications for sars-cov-2. Nat Rev Microbiol, 19: 155-170.

    95. Vlasova AN, Diaz A, Damtie D, Xiu L, Toh T-H, Lee JS-Y, Saif LJ, Gray GC. 2022. Novel canine coronavirus isolated from a hospitalized patient with pneumonia in east malaysia. Clinical Infectious Diseases, 74: 446-454.

    96. Vu MN, Lokugamage KG, Plante JA, Scharton D, Bailey AO, Sotcheff S, Swetnam DM, Johnson BA, Schindewolf C, Alvarado RE, Crocquet-Valdes PA, Debbink K, Weaver SC, Walker DH, Russell WK, Routh AL, Plante KS, Menachery VD. 2022. Qtqtn motif upstream of the furin-cleavage site plays a key role in sars-cov-2 infection and pathogenesis. Proc Natl Acad Sci U S A, 119: e2205690119.

    97. Wan Y, Shang J, Graham R, Baric RS, Li F. 2020. Receptor recognition by the novel coronavirus from wuhan: An analysis based on decade-long structural studies of sars coronavirus. J Virol, 94.

    98. Wang B, Zhang C, Lei X, Ren L, Zhao Z, Wang J, Huang H. 2021a. Construction of non-infectious sars-cov-2 replicons and their application in drug evaluation. Virol Sin, 36: 890-900.

    99. Wang Q, Guo Y, Iketani S, Nair MS, Li Z, Mohri H, Wang M, Yu J, Bowen AD, Chang JY, Shah JG, Nguyen N, Chen Z, Meyers K, Yin MT, Sobieszczyk ME, Sheng Z, Huang Y, Liu L, Ho DD. 2022. Antibody evasion by sars-cov-2 omicron subvariants ba.2.12.1, ba.4 and ba.5. Nature, 608: 603-608.

    100. Wang Y, Yang C, Song Y, Coleman JR, Stawowczyk M, Tafrova J, Tasker S, Boltz D, Baker R, Garcia L, Seale O, Kushnir A, Wimmer E, Mueller S. 2021b. Scalable live-attenuated sars-cov-2 vaccine candidate demonstrates preclinical safety and efficacy. Proc Natl Acad Sci U S A, 118.

    101. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, Sheng J, Quan L, Xia Z, Tan W, Cheng G, Jiang T. 2020a. Genome composition and divergence of the novel coronavirus (2019-ncov) originating in china. Cell Host Microbe, 27: 325-328.

    102. Wu JT, Leung K, Leung GM. 2020b. Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: A modelling study. Lancet, 395: 689-697.

    103. Xia H, Cao Z, Xie X, Zhang X, Chen JY, Wang H, Menachery VD, Rajsbaum R, Shi PY. 2020. Evasion of type i interferon by sars-cov-2. Cell Rep, 33: 108234.

    104. Xie X, Lokugamage KG, Zhang X, Vu MN, Muruato AE, Menachery VD, Shi PY. 2021. Engineering sars-cov-2 using a reverse genetic system. Nat Protoc, 16: 1761-1784.

    105. Xie X, Zou J, Shan C, Yang Y, Kum DB, Dallmeier K, Neyts J, Shi PY. 2016. Zika virus replicons for drug discovery. EBioMedicine, 12: 156-160.

    106. Xie X, Muruato AE, Zhang X, Lokugamage KG, Fontes-Garfias CR, Zou J, Liu J, Ren P, Balakrishnan M, Cihlar T, Tseng CK, Makino S, Menachery VD, Bilello JP, Shi PY. 2020a. A nanoluciferase sars-cov-2 for rapid neutralization testing and screening of anti-infective drugs for covid-19. Nat Commun, 11: 5214.

    107. Xie X, Muruato A, Lokugamage KG, Narayanan K, Zhang X, Zou J, Liu J, Schindewolf C, Bopp NE, Aguilar PV, Plante KS, Weaver SC, Makino S, LeDuc JW, Menachery VD, Shi PY. 2020b. An infectious cdna clone of sars-cov-2. Cell Host Microbe, 27: 841-848.e843.

    108. Yamasoba D, Kimura I, Nasser H, Morioka Y, Nao N, Ito J, Uriu K, Tsuda M, Zahradnik J, Shirakawa K, Suzuki R, Kishimoto M, Kosugi Y, Kobiyama K, Hara T, Toyoda M, Tanaka YL, Butlertanaka EP, Shimizu R, Ito H, Wang L, Oda Y, Orba Y, Sasaki M, Nagata K, Yoshimatsu K, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Kuramochi J, Seki M, Fujiki R, Kaneda A, Shimada T, Nakada TA, Sakao S, Suzuki T, Ueno T, Takaori-Kondo A, Ishii KJ, Schreiber G, Sawa H, Saito A, Irie T, Tanaka S, Matsuno K, Fukuhara T, Ikeda T, Sato K. 2022a. Virological characteristics of the sars-cov-2 omicron ba.2 spike. Cell, 185: 2103-2115.e2119.

    109. Yamasoba D, Kimura I, Nasser H, Morioka Y, Nao N, Ito J, Uriu K, Tsuda M, Zahradnik J, Shirakawa K, Suzuki R, Kishimoto M, Kosugi Y, Kobiyama K, Hara T, Toyoda M, Tanaka YL, Butlertanaka EP, Shimizu R, Ito H, Wang L, Oda Y, Orba Y, Sasaki M, Nagata K, Yoshimatsu K, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Kuramochi J, Seki M, Fujiki R, Kaneda A, Shimada T, Nakada TA, Sakao S, Suzuki T, Ueno T, Takaori-Kondo A, Ishii KJ, Schreiber G, Genotype to Phenotype Japan C, Sawa H, Saito A, Irie T, Tanaka S, Matsuno K, Fukuhara T, Ikeda T, Sato K. 2022b. Virological characteristics of the sars-cov-2 omicron ba.2 spike. Cell, 185: 2103-2115 e2119.

    110. Yang YL, Liang QZ, Xu SY, Mazing E, Xu GH, Peng L, Qin P, Wang B, Huang YW. 2019. Characterization of a novel bat-hku2-like swine enteric alphacoronavirus (seacov) infection in cultured cells and development of a seacov infectious clone. Virology, 536: 110-118.

    111. Ye C, Chiem K, Park JG, Oladunni F, Platt RN, 2nd, Anderson T, Almazan F, de la Torre JC, Martinez-Sobrido L. 2020. Rescue of sars-cov-2 from a single bacterial artificial chromosome. mBio, 11.

    112. Ye C, Chiem K, Park JG, Silvas JA, Morales Vasquez D, Sourimant J, Lin MJ, Greninger AL, Plemper RK, Torrelles JB, Kobie JJ, Walter MR, de la Torre JC, Martinez-Sobrido L. 2021. Analysis of sars-cov-2 infection dynamic in vivo using reporter-expressing viruses. Proc Natl Acad Sci U S A, 118.

    113. Ye ZW, Ong CP, Tang K, Fan Y, Luo C, Zhou R, Luo P, Cheng Y, Gray VS, Wang P, Chu H, Chan JF, To KK, Chen H, Chen Z, Yuen KY, Ling GS, Yuan S, Jin DY. 2022. Intranasal administration of a single dose of a candidate live attenuated vaccine derived from an nsp16-deficient sars-cov-2 strain confers sterilizing immunity in animals. Cell Mol Immunol, 19: 588-601.

    114. Yount B, Curtis KM, Baric RS. 2000. Strategy for systematic assembly of large rna and DNA genomes: Transmissible gastroenteritis virus model. J Virol, 74: 10600-10611.

    115. Yount B, Denison MR, Weiss SR, Baric RS. 2002. Systematic assembly of a full-length infectious cdna of mouse hepatitis virus strain a59. J Virol, 76: 11065-11078.

    116. Yount B, Roberts RS, Lindesmith L, Baric RS. 2006. Rewiring the severe acute respiratory syndrome coronavirus (sars-cov) transcription circuit: Engineering a recombination-resistant genome. Proc Natl Acad Sci U S A, 103: 12546-12551.

    117. Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS. 2003. Reverse genetics with a full-length infectious cdna of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A, 100: 12995-13000.

    118. Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C, Veinotte K, Egri SB, Schaffner SF, Lemieux JE, Munro JB, Rafique A, Barve A, Sabeti PC, Kyratsous CA, Dudkina NV, Shen K, Luban J. 2020. Structural and functional analysis of the d614g sars-cov-2 spike protein variant. Cell, 183: 739-751.e738.

    119. Zhang H, Fischer DK, Shuda M, Moore PS, Gao SJ, Ambrose Z, Guo H. 2022. Construction and characterization of two sars-cov-2 minigenome replicon systems. J Med Virol, 94: 2438-2452.

    120. Zhang QY, Deng CL, Liu J, Li JQ, Zhang HQ, Li N, Zhang YN, Li XD, Zhang B, Xu Y, Ye HQ. 2021a. Sars-cov-2 replicon for high-throughput antiviral screening. J Gen Virol, 102.

    121. Zhang X, Liu Y, Liu J, Bailey AL, Plante KS, Plante JA, Zou J, Xia H, Bopp NE, Aguilar PV, Ren P, Menachery VD, Diamond MS, Weaver SC, Xie X, Shi PY. 2021b. A trans-complementation system for sars-cov-2 recapitulates authentic viral replication without virulence. Cell, 184: 2229-2238 e2213.

    122. Zhang Y, Song W, Chen S, Yuan Z, Yi Z. 2021c. A bacterial artificial chromosome (bac)-vectored noninfectious replicon of sars-cov-2. Antiviral Res, 185: 104974.

    123. Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, Wang H, Bao R. 2023a. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduct Target Ther, 8: 112.

    124. Zhao Z, Xu L-D, Zhang F, Liang Q-Z, Jiao Y, Shi F-S, He B, Xu P, Huang Y-W. 2023b. Heat shock protein 90 facilitates sars-cov-2 structural protein-mediated virion assembly and promotes virus-induced pyroptosis. Journal of Biological Chemistry, 299.

    125. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579: 270-273.

    126. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. 2020. A novel coronavirus from patients with pneumonia in china, 2019. N Engl J Med, 382: 727-733.

  • 加载中

Article Metrics

Article views(2795) PDF downloads(22) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Reverse genetics systems for SARS-CoV-2: Development and applications

      Corresponding author: Yao-Wei Huang, yhuang@scau.edu.cn
    • a. Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China;
    • b. State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China;
    • c. Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China

    Abstract: The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused serious harm to human health and struck a blow to global economic development. Research on SARS-CoV-2 has greatly benefited from the use of reverse genetics systems, which have been established to artificially manipulate the viral genome, generating recombinant and reporter infectious viruses or biosafety level 2 (BSL-2)-adapted non-infectious replicons with desired modifications. These tools have been instrumental in studying the molecular biological characteristics of the virus, investigating antiviral therapeutics, and facilitating the development of attenuated vaccine candidates. Here, we review the construction strategies, development, and applications of reverse genetics systems for SARS-CoV-2, which may be applied to other CoVs as well.

    Reference (126) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return