• Andres, G., Charro, D., Matamoros, T., Dillard, R.S.,Abrescia, N.G.A., 2020. The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. J. Biol. Chem. 295, 1-12.

  • Biagetti, M., Cuccioloni, M., Bonfili, L., Cecarini, V., Sebastiani, C., Curcio, L., Giammarioli, M., De Mia, G.M., Eleuteri, A.M.,Angeletti, M., 2018. Chimeric DNA/LNA-based biosensor for the rapid detection of African swine fever virus. Talanta. 184, 35-41.

  • Boinas, F.S., Hutchings, G.H., Dixon, L.K.,Wilkinson, P.J., 2004. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol. 85, 2177-2187.

  • Burmakina, G., Malogolovkin, A., Tulman, E.R., Zsak, L., Delhon, G., Diel, D.G., Shobogorov, N.M., Morgunov, Y.P., Morgunov, S.Y., Kutish, G.F., Kolbasov, D.,Rock, D.L., 2016. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. J. Gen. Virol. 97, 1670-1675.

  • Caixia, W., Songyin, Q., Ying, X., Haoyang, Y., Haoxuan, L., Shaoqiang, W., Chunyan, F.,Xiangmei, L., 2022. Development of a blocking ELISA kit for detection of ASFV antibody based on a monoclonal antibody against full-length p72. J. AOAC Int. 105, 1428-1436.

  • Cao, Y., Han, D., Zhang, Y., Zhang, K., Du, N., Tong, W., Li, G., Zheng, H., Liu, C., Gao, F.,Tong, G., 2021. Identification of one novel epitope targeting p54 protein of African swine fever virus using monoclonal antibody and development of a capable ELISA. Res. Vet. Sci. 141, 19-25.

  • Chen, D., Wang, D., Wang, C., Wei, F., Zhao, H., Lin, X.,Wu, S., 2021. Application of an AlphaLISA method for rapid sensitive detection of African swine fever virus in porcine serum. Appl. Microbiol. Biotechnol. 105, 4751-4759.

  • Chen, W., Zhao, D., He, X., Liu, R., Wang, Z., Zhang, X., Li, F., Shan, D., Chen, H., Zhang, J., Wang, L., Wen, Z., Wang, X., Guan, Y., Liu, J.,Bu, Z., 2020. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci. China Life Sci. 63, 623-634.

  • Dixon, L.K., Chapman, D.A., Netherton, C.L.,Upton, C., 2013. African swine fever virus replication and genomics. Virus Res. 173, 3-14.

  • Du, T., Zhu, G., Wu, X., Fang, J.,Zhou, E.M., 2019. Biotinylated single-domain antibody-based blocking ELISA for detection of antibodies against swine influenza virus. Int J Nanomedicine. 14, 9337-9349.

  • Freije, J.M., Munoz, M., Vinuela, E.,Lopez-Otin, C., 1993. High-level expression in Escherichia coli of the gene coding for the major structural protein (p72) of African swine fever virus. Gene. 123, 259-262.

  • Gallardo, C., Soler, A., Rodze, I., Nieto, R., Cano-Gomez, C., Fernandez-Pinero, J.,Arias, M., 2019. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transbound. Emerg. Dis. 66, 1399-1404.

  • Ge, S., Li, J., Fan, X., Liu, F., Li, L., Wang, Q., Ren, W., Bao, J., Liu, C., Wang, H., Liu, Y., Zhang, Y., Xu, T., Wu, X.,Wang, Z., 2018. Molecular characterization of African swine fever virus, China, 2018. Emerg. Infect. Dis. 24, 2131-2133.

  • Geng, R., Sun, Y., Li, R., Yang, J., Ma, H., Qiao, Z., Lu, Q., Qiao, S.,Zhang, G., 2022. Development of a p72 trimer-based colloidal gold strip for detection of antibodies against African swine fever virus. Appl. Microbiol. Biotechnol. 106, 2703-2714.

  • Goatley, L.C.,Dixon, L.K., 2011. Processing and localization of the african swine fever virus CD2v transmembrane protein. J. Virol. 85, 3294-3305.

  • Heimerman, M.E., Murgia, M.V., Wu, P., Lowe, A.D., Jia, W.,Rowland, R.R., 2018. Linear epitopes in African swine fever virus p72 recognized by monoclonal antibodies prepared against baculovirus-expressed antigen. J. Vet. Diagn. Invest. 30, 406-412.

  • Hemmink, J.D., Khazalwa, E.M., Abkallo, H.M., Oduor, B., Khayumbi, J., Svitek, N., Henson, S.P., Blome, S., Keil, G., Bishop, R.P.,Steinaa, L., 2022. Deletion of the CD2v gene from the genome of ASFV-Kenya-IX-1033 partially reduces virulence and induces protection in pigs. Viruses. 14, 1917.

  • Jia, N., Ou, Y., Pejsak, Z., Zhang, Y.,Zhang, J., 2017. Roles of African swine fever virus structural proteins in viral infection. J. Vet. Res. 61, 135-143.

  • Jia, R., Zhang, G., Bai, Y., Liu, H., Chen, Y., Ding, P., Zhou, J., Feng, H., Li, M., Tian, Y.,Wang, A., 2022. Identification of linear B cell epitopes on CD2V protein of African swine fever virus by monoclonal antibodies. Microbiol. Spectr. 10, e0105221.

  • Jiang, W., Jiang, D., Li, L., Wan, B., Wang, J., Wang, P., Shi, X., Zhao, Q., Song, J., Zhu, Z., Ji, P.,Zhang, G., 2022. Development of an indirect ELISA for the identification of African swine fever virus wild-type strains and CD2v-deleted strains. Front. Vet. Sci. 9, 1006895.

  • Jolaoluwa, A.E., Oluseyi, O.B., Ido, G.F., Yusoff, S.M.,Adetunji, O.G., 2021. Detection of African swine fever virus in pigs in Southwest Nigeria. J. Vet. World. 14, 1840-1845.

  • King, D.P., Reid, S.M., Hutchings, G.H., Grierson, S.S., Wilkinson, P.J., Dixon, L.K., Bastos, A.D.,Drew, T.W., 2003. Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. J. Virol. Methods. 107, 53-61.

  • Liu, Q., Ma, B., Qian, N., Zhang, F., Tan, X., Lei, J.,Xiang, Y., 2019. Structure of the African swine fever virus major capsid protein p72. Cell Res. 29, 953-955.

  • Liu, Y., Xie, Z., Li, Y., Song, Y., Di, D., Liu, J., Gong, L., Chen, Z., Wu, J., Ye, Z., Liu, J., Yu, W., Lv, L., Zhong, Q., Tian, C., Song, Q., Wang, H.,Chen, H., 2023. Evaluation of an I177L gene-based five-gene-deleted African swine fever virus as a live attenuated vaccine in pigs. Emerg. Microbes Infect. 12, 2148560.

  • Lv, C., Zhao, Y., Jiang, L., Zhao, L., Wu, C., Hui, X., Hu, X., Shao, Z., Xia, X., Sun, X., Zhang, Q., Jin, M., 2021. Development of a dual ELISA for the detection of CD2v-unexpressed lower-virulence mutational ASFV. Life (Basel). 11, 1214.

  • Muyldermans, S., 2021. Applications of nanobodies. Annu. Rev. Anim. Biosci. 9, 401-421.

  • Nah, J.J., Kwon, O.G., Choi, J.D., Jang, S.H., Lee, H.J., Ahn, D.G., Lee, K., Kang, B., Hae-Eun, K.,Shin, Y.K., 2022. Development of an indirect ELISA against African swine fever virus using two recombinant antigens, partial p22 and p30. J. Virol. Methods. 309, 114611.

  • Oura, C.A., Edwards, L.,Batten, C.A., 2013. Virological diagnosis of African swine fever--comparative study of available tests. Virus Res. 173, 150-158.

  • Perez-Nunez, D., Sunwoo, S.Y., Garcia-Belmonte, R., Kim, C., Vigara-Astillero, G., Riera, E., Kim, D.M., Jeong, J., Tark, D., Ko, Y.S., You, Y.K.,Revilla, Y., 2022. Recombinant African swine fever virus Arm/07/CBM/c2 lacking CD2v and A238L is attenuated and protects pigs against virulent Korean Paju strain. Vaccines (Basel). 10, 1992.

  • Pillay, T.S.,Muyldermans, S., 2021. Application of single-domain antibodies (“nanobodies”) to laboratory diagnosis. Ann. Lab. Med. 41, 549-558.

  • Revilla, Y., Perez-Nunez, D.,Richt, J.A., 2018. African swine fever virus biology and vaccine approaches. Adv. Virus Res. 100, 41-74.

  • Sastre, P., Perez, T., Costa, S., Yang, X., Raber, A., Blome, S., Goller, K.V., Gallardo, C., Tapia, I., Garcia, J., Sanz, A.,Rueda, P., 2016. Development of a duplex lateral flow assay for simultaneous detection of antibodies against African and Classical swine fever viruses. J. Vet. Diagn. Invest. 28, 543-549.

  • Sheng, Y., Wang, K., Lu, Q., Ji, P., Liu, B., Zhu, J., Liu, Q., Sun, Y., Zhang, J., Zhou, E.M.,Zhao, Q., 2019. Nanobody-horseradish peroxidase fusion protein as an ultrasensitive probe to detect antibodies against Newcastle disease virus in the immunoassay. J. Nanobiotechnology. 17, 35.

  • Sun, E., Zhang, Z., Wang, Z., He, X., Zhang, X., Wang, L., Wang, W., Huang, L., Xi, F., Huangfu, H., Tsegay, G., Huo, H., Sun, J., Tian, Z., Xia, W., Yu, X., Li, F., Liu, R., Guan, Y., Zhao, D.,Bu, Z., 2021. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Sci. China Life Sci. 64, 752-765.

  • Vincke, C., Gutierrez, C., Wernery, U., Devoogdt, N., Hassanzadeh-Ghassabeh, G.,Muyldermans, S., 2012. Generation of single domain antibody fragments derived from camelids and generation of manifold constructs. Methods Mol. Biol. 907, 145-176.

  • Wang, A., Jia, R., Liu, Y., Zhou, J., Qi, Y., Chen, Y., Liu, D., Zhao, J., Shi, H., Zhang, J.,Zhang, G., 2020a. Development of a novel quantitative real-time PCR assay with lyophilized powder reagent to detect African swine fever virus in blood samples of domestic pigs in China. Transbound. Emerg. Dis. 67, 284-297.

  • Wang, D., Yu, J., Wang, Y., Zhang, M., Li, P., Liu, M.,Liu, Y., 2020b. Development of a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). J. Virol. Methods. 276, 113775.

  • Wang, L., Fu, D., Tesfagaber, W., Li, F., Chen, W., Zhu, Y., Sun, E., Wang, W., He, X., Guo, Y., Bu, Z.,Zhao, D., 2022. Development of an ELISA method to differentiate animals infected with wild-type African swine fever viruses and attenuated HLJ/18-7GD vaccine candidate. Viruses. 14, 1731.

  • Wang, Y., Xu, L., Noll, L., Stoy, C., Porter, E., Fu, J., Feng, Y., Peddireddi, L., Liu, X., Dodd, K.A., Jia, W.,Bai, J., 2020c. Development of a real-time PCR assay for detection of African swine fever virus with an endogenous internal control. Transbound. Emerg. Dis. 67, 2446-2454.

  • Wilkinson, P.J., Pegram, R.G., Perry, B.D., Lemche, J.,Schels, H.F., 1988. The distribution of African swine fever virus isolated from Ornithodoros moubata in Zambia. Epidemiol. Infect. 101, 547-564.

  • Yang, H., Peng, Z., Song, W., Zhang, C., Fan, J., Chen, H., Hua, L., Pei, J., Tang, X., Chen, H.,Wu, B., 2022. A triplex real-time PCR method to detect African swine fever virus gene-deleted and wild type strains. Front. Vet. Sci. 9, 943099.

  • Zhao, H., Ren, J., Wu, S., Guo, H., Du, Y., Wan, B., Ji, P., Wu, Y., Zhuang, G., Zhang, A.,Zhang, G., 2022. HRP-conjugated-nanobody-based cELISA for rapid and sensitive clinical detection of ASFV antibodies. Appl. Microbiol. Biotechnol. 106, 4269-4285.

  • Zhao, J., Zhu, J., Wang, Y., Yang, M., Zhang, Q., Zhang, C., Nan, Y., Zhou, E.M., Sun, Y.,Zhao, Q., 2022. A simple nanobody-based competitive ELISA to detect antibodies against African swine fever virus. Virol. Sin. 37, 922-933.

  • Zhu, Z., Xiao, C.T., Fan, Y., Cai, Z., Lu, C., Zhang, G., Jiang, T., Tan, Y.,Peng, Y., 2019. Homologous recombination shapes the genetic diversity of African swine fever viruses. Vet. Microbiol. 236, 108380.