• Birkenheuer, C., Danko, C., Baines, J., 2018. Herpes simplex virus 1 dramatically alters loading and positioning of RNA polymerase II on host genes early in infection.J. Virol. 92 e02184-17.

  • Biswas, N., Sanchez, V., Spector, D., 2003. Human cytomegalovirus infection leads to accumulation of geminin and inhibition of the licensing of cellular DNA replication.J. Virol. 77, 2369-2376.

  • Blow, J., Dutta, A., 2005. Preventing re-replication of chromosomal DNA. Nat. Rev. Mol.Cell Biol. 6, 476-486.

  • Braun, T., Poole, E., Sinclair, J., 2012. Depletion of cellular pre-replication complex factors results in increased human cytomegalovirus DNA replication. PLoS One 7, e36057.

  • Castaneda, A., Didychuk, A., Louder, R., McCollum, C., Davis, Z., Nogales, E., Glaunsinger, B., 2020. The gammaherpesviral TATA-box-binding protein directly interacts with the CTD of host RNA Pol II to direct late gene transcription. PLoS Pathog. 16, e1008843.

  • Cheeran, M., Lokensgard, J., Schleiss, M., 2009. Neuropathogenesis of congenital cytomegalovirus infection:disease mechanisms and prospects for intervention. Clin.Microbiol. Rev. 22, 99-126.

  • Drew, W., 1992. Cytomegalovirus infection in patients with AIDS. Clin. Infect. Dis. 14, 608-615.

  • Fortunato, E., Sanchez, V., Yen, J., Spector, D., 2002. Infection of cells with human cytomegalovirus during S phase results in a blockade to immediate-early gene expression that can be overcome by inhibition of the proteasome. J. Virol. 76, 5369-5379.

  • Fraser, K., Rice, S., 2005. Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase II. J. Virol. 79, 11323-11334.

  • Fraser, K., Rice, S., 2007. Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase II. J. Virol. 81, 5091-5101.

  • Gatherer, D., Seirafian, S., Cunningham, C., Holton, M., Dargan, D., Baluchova, K., Hector, R., Galbraith, J., Herzyk, P., Wilkinson, G., Davison, A., 2011. Highresolution human cytomegalovirus transcriptome. Proc. Natl. Acad. Sci. U. S. A. 108, 19755-19760.

  • Greenaway, P., Wilkinson, G., 1987. Nucleotide sequence of the most abundantly transcribed early gene of human cytomegalovirus strain AD169. Virus Res. 7, 17-31. Jarroux, J., Morillon, A., Pinskaya, M., 2017. History, discovery, and classification of lncRNAs. Adv. Exp. Med. Biol. 1008, 1-46.

  • Kalejta, R., Shenk, T., 2002. Manipulation of the cell cycle by human cytomegalovirus. Front. Biosci. 7, d295-306.

  • Lee, Y., Kim, M., Han, J., Yeom, K., Lee, S., Baek, S., Kim, V., 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060.

  • McElroy, A., Dwarakanath, R., Spector, D., 2000. Dysregulation of cyclin E gene expression in human cytomegalovirus-infected cells requires viral early gene expression and is associated with changes in the Rb-related protein p130. J. Virol. 74, 4192-4206.

  • McDonough, S., Spector, D., 1983. Transcription in human fibroblasts permissively infected by human cytomegalovirus strain AD169. Virology 125, 31-46.

  • McSharry, B., Tomasec, P., Neale, M., Wilkinson, G., 2003. The most abundantly transcribed human cytomegalovirus gene (beta 2.7) is non-essential for growth in vitro. J. Gen. Virol. 84, 2511-2516.

  • Nishitani, H., Taraviras, S., Lygerou, Z., Nishimoto, T., 2001. The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of Sphase. J. Biol. Chem. 276, 44905-44911.

  • Park, R., Miller, G., 2018. Epstein-barr virus-induced nodules on viral replication compartments contain RNA processing proteins and a viral long noncoding RNA. J. Virol. 92 e01254-18.

  • Perng, Y., Campbell, J., Lenschow, D., Yu, D., 2014. Human cytomegalovirus pUL79 is an elongation factor of RNA polymerase II for viral gene transcription. PLoS Pathog. 10, e1004350.

  • Pijlman, G., Funk, A., Kondratieva, N., Leung, J., Torres, S., van der Aa, L., Liu, W., Palmenberg, A., Shi, P., Hall, R., Khromykh, A., 2008. A highly structured, nucleaseresistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe 4, 579-591.

  • Poole, E., Kuan, W., Barker, R., Sinclair, J., 2016. The human cytomegalovirus non-coding Beta2.7 RNA as a novel therapeutic for Parkinson's disease-Translational research with no translation. Virus Res. 212, 64-69.

  • Qian, Z., Leung-Pineda, V., Xuan, B., Piwnica-Worms, H., Yu, D., 2010. Human cytomegalovirus protein pUL117 targets the mini-chromosome maintenance complex and suppresses cellular DNA synthesis. PLoS Pathog. 6, e1000814.

  • Randell, J., Bowers, J., Rodríguez, H., Bell, S., 2006. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol. Cell. 21, 29-39.

  • Razonable, R., Eid, A., 2009. Viral infections in transplant recipients. Transplantation 100, 479-501.

  • Reeves, M., Davies, A., McSharry, B., Wilkinson, G., Sinclair, J., 2007. Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316, 1345-1348.

  • Rennekamp, A., Lieberman, P., 2011. Initiation of Epstein-Barr virus lytic replication requires transcription and the formation of a stable RNA-DNA hybrid molecule at OriLyt. J. Virol. 85, 2837-2850.

  • Rossetto, C., Tarrant-Elorza, M., Pari, G., 2013. Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+) monocytes and CD34 (+) cells. PLoS Pathog. 9, e1003366.

  • Saayman, S., Ackley, A., Turner, A., Famiglietti, M., Bosque, A., Clemson, M., Planelles, V., Morris, K., 2014. An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol. Ther. 22, 1164-1175.

  • Schier, A., Taatjes, D., 2020. Structure and mechanism of the RNA polymerase II transcription machinery. Genes Dev. 34, 465-488.

  • Speck, C., Chen, Z., Li, H., Stillman, B., 2005. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat. Struct. Mol. Biol. 12, 965-971.

  • Spector, D., 2015. Human cytomegalovirus riding the cell cycle. Med. Microbiol. Immunol. 204, 409-419.

  • Spencer, C., Dahmus, M., Rice, S., 1997. Repression of host RNA polymerase II transcription by herpes simplex virus type 1. J. Virol. 71, 2031-2040.

  • Stern-Ginossar, N., Weisburd, B., Michalski, A., Le, V., Hein, M., Huang, S., Ma, M., Shen, B., Qian, S., Hengel, H., Mann, M., Ingolia, N., Weissman, J., 2012. Decoding human cytomegalovirus. Science 338, 1088-1093.

  • Vallery, T., Withers, J., Andoh, J., Steitz, J., 2018. Kaposi's sarcoma-associated herpesvirus mRNA accumulation in nuclear foci is influenced by viral DNA replication and viral noncoding polyadenylated nuclear RNA. J. Virol. 92 e00220-18.

  • Wei, J., Huang, K., Yang, C., Kang, C., 2017. Non-coding RNAs as regulators in epigenetics(Review). Oncol. Rep. 37, 3-9.

  • Wiebusch, L., Asmar, J., Uecker, R., Hagemeier, C., 2003. Human cytomegalovirus immediate-early protein 2 (IE2)-mediated activation of cyclin E is cell-cycleindependent and forces S-phase entry in IE2-arrested cells. J. Gen. Virol. 84, 51-60.

  • Wohlschlegel, J., Dwyer, B., Dhar, S., Cvetic, C., Walter, J., 2000. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290, 2309-2312.

  • Zaborowska, J., Baumli, S., Laitem, C., O'Reilly, D., Thomas, P., O'Hare, P., Murphy, S., 2014. Herpes Simplex Virus 1 (HSV-1) ICP22 protein directly interacts with cyclin-dependent kinase (CDK)9 to inhibit RNA polymerase II transcription elongation. PLoS One 9, e107654.

  • Zhao, F., Shen, Z., Liu, Z., Zeng, W., Cheng, S., Ma, Y., Rayner, S., Yang, B., Qiao, G., Jiang, H., Gao, S., Zhu, H., Xu, F., Ruan, Q., Luo, M., 2016. Identification and BAC construction of Han, the first characterized HCMV clinical strain in China. J. Med. Virol. 88, 859-870.