• ahola, T., Laakkonen, P., Vihinen, H., Kaariainen, L. 1997. Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J Virol, 71, 392-397.

  • Aouadi, W., Blanjoie, A., Vasseur, J. J., Debart, F., Canard, B., Decroly, E. 2017. Binding of the Methyl Donor S-Adenosyl-l-Methionine to Middle East Respiratory Syndrome Coronavirus 2'-O-Methyltransferase nsp16 Promotes Recruitment of the Allosteric Activator nsp10. J Virol, 91, e02217-16.

  • Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E. J., Canard, B., Decroly, E. 2010. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog, 6, e1000863.

  • Brecher, M. B., Li, Z., Zhang, J., Chen, H., Lin, Q., Liu, B., Li, H. 2015. Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase. Protein Sci, 24, 117-128.

  • Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., Guo, D. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci U S A, 106, 3484-3489.

  • Chen, Y., Guo, D. 2016. Molecular mechanisms of coronavirus RNA capping and methylation. Virol Sin, 31, 3-11.

  • Chen, Y., Liu, Q., Guo, D. 2020. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol, 92, 418-423.

  • Chen, Y., Liu, Q., Zhou, L., Zhou, Y., Yan, H., Lan, K. 2022. Emerging SARS-CoV-2 variants: Why, how, and what's next? Cell Insight, 1, 100029.

  • Chen, Y., Su, C., Ke, M., Jin, X., Xu, L., Zhang, Z., Wu, A., Sun, Y., Yang, Z., Tien, P., Ahola, T., Liang, Y., Liu, X., Guo, D. 2011. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2'-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog, 7, e1002294.

  • Chrebet, G. L., Wisniewski, D., Perkins, A. L., Deng, Q., Kurtz, M. B., Marcy, A., Parent, S. A. 2005. Cell-based assays to detect inhibitors of fungal mRNA capping enzymes and characterization of sinefungin as a cap methyltransferase inhibitor. J Biomol Screen, 10, 355-364.

  • Daffis, S., Szretter, K. J., Schriewer, J., Li, J., Youn, S., Errett, J., Lin, T. Y., Schneller, S., Zust, R., Dong, H., Thiel, V., Sen, G. C., Fensterl, V., Klimstra, W. B., Pierson, T. C., Buller, R. M., Gale, M., Jr., Shi, P. Y., Diamond, M. S. 2010. 2'-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 468, 452-456.

  • Decroly, E., Debarnot, C., Ferron, F., Bouvet, M., Coutard, B., Imbert, I., Gluais, L., Papageorgiou, N., Sharff, A., Bricogne, G., Ortiz-Lombardia, M., Lescar, J., Canard, B. 2011a. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2'-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog, 7, e1002059.

  • Decroly, E., Ferron, F., Lescar, J., Canard, B. 2011b. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol, 10, 51-65.

  • DECROLY, E., IMBERT, I., COUTARD, B., BOUVET, M., SELISKO, B., ALVAREZ, K., GORBALENYA, A. E., SNIJDER, E. J. & CANARD, B. 2008a. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity. J Virol, 82, 8071-8084.

  • Decroly, E., Imbert, I., Coutard, B., Bouvet, M. L., Selisko, B., Alvarez, K., Gorbalenya, A. E., Snijder, E. J., Canard, B. 2008b. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity. Journal of Virology, 82, 8071-8084.

  • Deng, J., Yang, S., Li, Y., Tan, X., Liu, J., Yu, Y., Ding, Q., Fan, C., Wang, H., Chen, X., Liu, Q., Guo, X., Gong, F., Zhou, L., Chen, Y. 2024. Natural evidence of coronaviral 2'-O-methyltransferase activity affecting viral pathogenesis via improved substrate RNA binding. Signal Transduct Target Ther, 9, 140.

  • Dong, H., Zhang, B., Shi, P. Y. 2008. Flavivirus methyltransferase: a novel antiviral target. Antiviral Res, 80, 1-10.

  • Encinar, J. A., Menendez, J. A. 2020. Potential Drugs Targeting Early Innate Immune Evasion of SARS-Coronavirus 2 via 2'-O-Methylation of Viral RNA. Viruses, 12, 525.

  • Ferron, F., Decroly, E., Selisko, B., Canard, B. 2012. The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res, 96, 21-31.

  • Hager, J., Staker, B. L., Bugl, H., Jakob, U. 2002. Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem, 277, 41978-41986.

  • Hodel, A. E., Gershon, P. D., Quiocho, F. A. 1998. Structural basis for sequence-nonspecific recognition of 5'-capped mRNA by a cap-modifying enzyme. Mol Cell, 1, 443-447.

  • Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K. K., Schlee, M., Endres, S., Hartmann, G. 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science, 314, 994-997.

  • Huang, Y., Xie, J., Guo, Y., Sun, W., He, Y., Liu, K., Yan, J., Tao, A., Zhong, N. 2021. SARS-CoV-2: Origin, Intermediate Host and Allergenicity Features and Hypotheses. Healthcare (Basel), 9, 1132.

  • Ivanov, K. A., Ziebuhr, J. 2004. Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5'-triphosphatase activities. J Virol, 78, 7833-7838.

  • Jeffery, D. R., Roth, J. A. 1987. Kinetic Reaction-Mechanism for Magnesium Binding To Membrane-Bound and Soluble Catechol O-Methyltransferase. Biochemistry, 26, 2955-2958.

  • Joseph, J. S., Saikatendu, K. S., Subramanian, V., Neuman, B. W., Brooun, A., Griffith, M., Moy, K., Yadav, M. K., Velasquez, J., Buchmeier, M. J., Stevens, R. C., Kuhn, P. 2006. Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J Virol, 80, 7894-7901.

  • Ke, M., Chen, Y., Wu, A., Sun, Y., Su, C., Wu, H., Jin, X., Tao, J., Wang, Y., Ma, X., Pan, J. A., Guo, D. 2012. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2'-O-methyltransferase activity of nsp10/nsp16 complex. Virus Res, 167, 322-328.

  • Krafcikova, P., Silhan, J., Nencka, R., Boura, E. 2020. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat Commun, 11, 3717.

  • Krishna, S. S., Majumdar, I., Grishin, N. V. 2003. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res, 31, 532-550.

  • Lin, S., Chen, H., Ye, F., Chen, Z., Yang, F., Zheng, Y., Cao, Y., Qiao, J., Yang, S., Lu, G. 2020. Crystal structure of SARS-CoV-2 nsp10/nsp16 2'-O-methylase and its implication on antiviral drug design. Signal Transduct Target Ther, 5, 131.

  • Liu, H., Kiledjian, M. 2006. Decapping the message: a beginning or an end. Biochem Soc Trans, 34, 35-38.

  • Lugari, A., Betzi, S., Decroly, E., Bonnaud, E., Hermant, A., Guillemot, J. C., Debarnot, C., Borg, J. P., Bouvet, M., Canard, B., Morelli, X., Lecine, P. 2010. Molecular mapping of the RNA Cap 2'-O-methyltransferase activation interface between severe acute respiratory syndrome coronavirus nsp10 and nsp16. J Biol Chem, 285, 33230-33241.

  • Mahalapbutr, P., Kongtaworn, N., Rungrotmongkol, T. 2020. Structural insight into the recognition of S-adenosyl-L-homocysteine and sinefungin in SARS-CoV-2 Nsp16/Nsp10 RNA cap 2'-O-Methyltransferase. Comput Struct Biotechnol J, 18, 2757-2765.

  • Martin, J.L., Mcmillan, F.M. 2002. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol, 12, 783-793.

  • Maurya, S. K., Maurya, A. K., Mishra, N., Siddique, H. R. 2020. Virtual screening, ADME/T, and binding free energy analysis of anti-viral, anti-protease, and anti-infectious compounds against NSP10/NSP16 methyltransferase and main protease of SARS CoV-2. J Recept Signal Transduct Res, 40, 605-612.

  • Nallagatla, S. R., Toroney, R., Bevilacqua, P. C. 2008. A brilliant disguise for self RNA: 5'-end and internal modifications of primary transcripts suppress elements of innate immunity. RNA Biol, 5, 140-144.

  • Park, G. J., Osinski, A., Hernandez, G., Eitson, J. L., Majumdar, A., Tonelli, M., Henzler-Wildman, K., Pawlowski, K., Chen, Z., Li, Y., Schoggins, J. W., Tagliabracci, V. S. 2022. The mechanism of RNA capping by SARS-CoV-2. Nature, 609, 793-800.

  • Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., Weng, Z. 2014. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 30, 1771-1773.

  • Pradhan, M., Esteve, P. O., Chin, H. G., Samaranayke, M., Kim, G. D., Pradhan, S. 2008. CXXC domain of human DNMT1 is essential for enzymatic activity. Biochemistry, 47, 10000-10009.

  • Pugh, C. S., Borchardt, R. T. 1982. Effects of S-adenosylhomocysteine analogues on vaccinia viral messenger ribonucleic acid synthesis and methylation. Biochemistry, 21, 1535-1541.

  • Ray, D., Shah, A., Tilgner, M., Guo, Y., Zhao, Y., Dong, H., Deas, T. S., Zhou, Y., Li, H., Shi, P. Y. 2006. West Nile virus 5'-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5. J Virol, 80, 8362-8370.

  • Rehwinkel, J., Tan, C. P., Goubau, D., Schulz, O., Pichlmair, A., Bier, K., Robb, N., Vreede, F., Barclay, W., Fodor, E., Reis E Sousa, C. 2010. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell, 140, 397-408.

  • Robert, X., Gouet, P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res, 42, W320-W324.

  • Rogstam, A., Nyblom, M., Christensen, S., Sele, C., Talibov, V. O., Lindvall, T., Rasmussen, A. A., Andre, I., Fisher, Z., Knecht, W., Kozielski, F. 2020. Crystal Structure of Non-Structural Protein 10 from Severe Acute Respiratory Syndrome Coronavirus-2. Int J Mol Sci, 21, 7375.

  • Rosas-Lemus, M., Minasov, G., Shuvalova, L., Inniss, N. L., Kiryukhina, O., Brunzelle, J., Satchell, K. J. F. 2020. High-resolution structures of the SARS-CoV-2 2'-O-methyltransferase reveal strategies for structure-based inhibitor design. Sci Signal, 13, eabe1202.

  • Russ, A., Wittmann, S., Tsukamoto, Y., Herrmann, A., Deutschmann, J., Lagisquet, J., Ensser, A., Kato, H., Gramberg, T. 2022. Nsp16 shields SARS-CoV-2 from efficient MDA5 sensing and IFIT1-mediated restriction. EMBO Rep, 23, e55648.

  • Schindewolf, C., Lokugamage, K., Vu, M. N., Johnson, B. A., Scharton, D., Plante, J. A., Kalveram, B., Crocquet-Valdes, P. A., Sotcheff, S., Jaworski, E., Alvarado, R. E., Debbink, K., Daugherty, M. D., Weaver, S. C., Routh, A. L., Walker, D. H., Plante, K. S., Menachery, V. D. 2023. SARS-CoV-2 Uses Nonstructural Protein 16 To Evade Restriction by IFIT1 and IFIT3. J Virol, 97, e0153222.

  • Schwer, B., Lehman, K., Saha, N., Shuman, S. 2001. Characterization of the mRNA capping apparatus of Candida albicans. J Biol Chem, 276, 1857-1864.

  • Selisko, B., Peyrane, F. F., Canard, B., Alvarez, K., Decroly, E. 2010. Biochemical characterization of the (nucleoside-2'O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides (7Me)GpppAC(n) and GpppAC(n). J Gen Virol, 91, 112-121.

  • Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y., Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., Chen, H., Bu, Z. 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science, 368, 1016-1020.

  • Shikauchi, Y., Saiura, A., Kubo, T., Niwa, Y., Yamamoto, J., Murase, Y., Yoshikawa, H. 2009. SALL3 interacts with DNMT3A and shows the ability to inhibit CpG island methylation in hepatocellular carcinoma. Mol Cell Biol, 29, 1944-1958.

  • Smith, E. C., Case, J. B., Blanc, H., Isakov, O., Shomron, N., Vignuzzi, M., Denison, M. R. 2015. Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity. J Virol, 89, 6418-6426.

  • Tazikeh-Lemeski, E., Moradi, S., Raoufi, R., Shahlaei, M., Janlou, M. A. M., Zolghadri, S. 2020. Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study. J Biomol Struct Dyn, 39, 4633-4646.

  • Viswanathan, T., Arya, S., Chan, S. H., Qi, S., Dai, N., Misra, A., Park, J. G., Oladunni, F., Kovalskyy, D., Hromas, R. A., Martinez-Sobrido, L., Gupta, Y. K. 2020. Structural basis of RNA cap modification by SARS-CoV-2. Nat Commun, 11, 3718.

  • Wang, D., Jiang, A., Feng, J., Li, G., Guo, D., Sajid, M., Wu, K., Zhang, Q., Ponty, Y., Will, S., Liu, F., Yu, X., Li, S., Liu, Q., Yang, X. L., Guo, M., Li, X., Chen, M., Shi, Z. L., Lan, K., Chen, Y., Zhou, Y. 2021. The SARS-CoV-2 subgenome landscape and its novel regulatory features. Mol Cell, 81, 2135-2147.e5.

  • Wang, Y., Sun, Y., Wu, A., Xu, S., Pan, R., Zeng, C., Jin, X., Ge, X., Shi, Z., Ahola, T., Chen, Y., Guo, D. 2015. Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis. J Virol, 89, 8416-8427.

  • Wilamowski, M., Sherrell, D. A., Minasov, G., Kim, Y., Shuvalova, L., Lavens, A., Chard, R., Maltseva, N., Jedrzejczak, R., Rosas-Lemus, M., Saint, N., Foster, I. T., Michalska, K., Satchell, K. J. F., Joachimiak, A. 2021. 2'-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography. Proc Natl Acad Sci U S A, 118, e2100170118.

  • Woyciniuk, P., Linder, M., Scholtissek, C. 1995. The methyltransferase inhibitor Neplanocin A interferes with influenza virus replication by a mechanism different from that of 3-deazaadenosine. Virus Res, 35, 91-99.

  • Yan, L., Ge, J., Zheng, L., Zhang, Y., Gao, Y., Wang, T., Huang, Y., Yang, Y., Gao, S., Li, M., Liu, Z., Wang, H., Li, Y., Chen, Y., Guddat, L. W., Wang, Q., Rao, Z., Lou, Z. 2021a. Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Cell, 184, 184-193. e10.

  • Yan, L., Yang, Y., Li, M., Zhang, Y., Zheng, L., Ge, J., Huang, Y. C., Liu, Z., Wang, T., Gao, S., Zhang, R., Huang, Y. Y., Guddat, L. W., Gao, Y., Rao, Z., Lou, Z. 2021b. Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell, 184, 3474-3485. e11.

  • Ye, Z. W., Ong, C. P., Tang, K., Fan, Y., Luo, C., Zhou, R., Luo, P., Cheng, Y., Gray, V. S., Wang, P., Chu, H., Chan, J. F., To, K. K., Chen, H., Chen, Z., Yuen, K. Y., Ling, G. S., Yuan, S., Jin, D. Y. 2022. Intranasal administration of a single dose of a candidate live attenuated vaccine derived from an NSP16-deficient SARS-CoV-2 strain confers sterilizing immunity in animals. Cell Mol Immunol, 19, 588-601.

  • Zeng, C., Wu, A., Wang, Y., Xu, S., Tang, Y., Jin, X., Wang, S., Qin, L., Sun, Y., Fan, C., Snijder, E. J., Neuman, B. W., Chen, Y., Ahola, T., Guo, D. 2016. Identification and Characterization of a Ribose 2'-O-Methyltransferase Encoded by the Ronivirus Branch of Nidovirales. J Virol, 90, 6675-6685.

  • Zhou, Y., Ray, D., Zhao, Y., Dong, H., Ren, S., Li, Z., Guo, Y., Bernard, K. A., Shi, P. Y., Li, H. 2007. Structure and function of flavivirus NS5 methyltransferase. J Virol, 81, 3891-3903.

  • Ziebuhr, J. 2005. The coronavirus replicase. Curr Top Microbiol Immunol, 287, 57-94.

  • Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B. W., Ziebuhr, J., Szretter, K. J., Baker, S. C., Barchet, W., Diamond, M. S., Siddell, S. G., Ludewig, B., Thiel, V. 2011. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol, 12, 137-143.