Citation: Yufeng Li, Hengrui Hu, Jia Liu, Longda Ma, Xi Wang, Liang Liu, Qian Liu, Liang Ren, Jiang Li, Fei Deng, Zhihong Hu, Yiwu Zhou, Manli Wang. Crucial role played by CK8+ cells in mediating alveolar injury remodeling for patients with COVID-19 .VIROLOGICA SINICA, 2024, 39(3) : 390-402.  http://dx.doi.org/10.1016/j.virs.2024.03.007

Crucial role played by CK8+ cells in mediating alveolar injury remodeling for patients with COVID-19

  • The high risk of SARS-CoV-2 infection and reinfection and the occurrence of post-acute pulmonary sequelae have highlighted the importance of understanding the mechanism underlying lung repair after injury. To address this concern, comparative and systematic analyses of SARS-CoV-2 infection in COVID-19 patients and animals were conducted. In the lungs of nine patients who died of COVID-19 and one recovered from COVID-19 but died of unrelated disease in early 2020, damage-related transient progenitor (DATP) cells expressing CK8 marker proliferated significantly. These CK8+ DATP cells were derived from bronchial CK5+ basal cells. However, they showed different cell fate toward differentiation into type I alveolar cells in the deceased and convalescent patients, respectively. By using a self-limiting hamster infection model mimicking the dynamic process of lung injury remodeling in mild COVID-19 patients, the accumulation and regression of CK8+ cell marker were found to be closely associated with the disease course. Finally, we examined the autopsied lungs of two patients who died of infection by the recent Omicron variant and found that they only exhibited mild pathological injury with no CK8+ cell proliferation. These results indicate a clear pulmonary cell remodeling route and suggest that CK8+ DATP cells play a primary role in mediating alveolar remodeling, highlighting their potential applications as diagnostic markers and therapeutic targets.

  • 加载中
  • 10.1016j.virs.2024.03.007-ESM.docx
    1. Barkauskas, C.E., Cronce, M.J., Rackley, C.R., Bowie, E.J., Keene, D.R., Stripp, B.R., Randell, S.H., Noble, P.W., Hogan, B.L., 2013. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest., 123, 3025-3036.

    2. Basil, M.C., Katzen, J., Engler, A.E., Guo, M., Herriges, M.J., Kathiriya, J.J., Windmueller, R., Ysasi, A.B., Zacharias, W.J., Chapman, H.A., Kotton, D.N., Rock, J.R., Snoeck, H.W., Vunjak-Novakovic, G., Whitsett, J.A., Morrisey, E.E., 2020. The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell, 26, 482-502.

    3. Blanco, J.R., Cobos-Ceballos, M.J., Navarro, F., Sanjoaquin, I., Arnaiz De Las Revillas, F., Bernal, E., Buzon-Martin, L., Viribay, M., Romero, L., Espejo-Perez, S., Valencia, B., Ibanez, D., Ferrer-Pargada, D., Malia, D., Gutierrez-Herrero, F.G., Olalla, J., Jurado-Gamez, B., Ugedo, J., 2021. Pulmonary long-term consequences of COVID-19 infections after hospital discharge. Clin. Microbiol. Infect., 27, 892-896.

    4. Chen, J., Wu, H., Yu, Y., Tang, N., 2020. Pulmonary alveolar regeneration in adult COVID-19 patients. Cell Res., 30, 708-710.

    5. Choi, J., Park, J.E., Tsagkogeorga, G., Yanagita, M., Koo, B.K., Han, N., Lee, J.H., 2020. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell, 27, 366-382.e367.

    6. Davis, H.E., Mccorkell, L., Vogel, J.M., Topol, E.J., 2023. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol., 21, 133-146.

    7. Ducloyer, M., Gaborit, B., Toquet, C., Castain, L., Bal, A., Arrigoni, P.P., Lecomte, R., Clement, R., Sagan, C., 2020. Complete post-mortem data in a fatal case of COVID-19: clinical, radiological and pathological correlations. Int. J. Legal Med., 134, 2209-2214.

    8. Fang, Y., Liu, H., Huang, H., Li, H., Saqi, A., Qiang, L., Que, J., 2020. Distinct stem/progenitor cells proliferate to regenerate the trachea, intrapulmonary airways and alveoli in COVID-19 patients. Cell Res., 30, 705-707.

    9. Feng, X.L., Yu, D., Zhang, M., Li, X., Zou, Q.C., Ma, W., Han, J.B., Xu, L., Yang, C., Qu, W., Deng, Z.H., Long, J., Long, Y., Li, M., Yao, Y.G., Dong, X.Q., Zeng, J., Li, M.H., 2022. Characteristics of replication and pathogenicity of SARS-CoV-2 Alpha and Delta isolates .Virol. Sin., 37, 804-812.

    10. Finn, J., Sottoriva, K., Pajcini, K.V., Kitajewski, J.K., Chen, C., Zhang, W., Malik, A.B., Liu, Y., 2019. Dlk1-mediated temporal regulation of Notch signaling is required for differentiation of alveolar type II to type I cells during repair. Cell Rep., 26, 2942-2954.e2945.

    11. Fox, S.E., Akmatbekov, A., Harbert, J.L., Li, G., Quincy Brown, J., Vander Heide, R.S., 2020. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir. Med., 8, 681-686.

    12. Goussard, P., Schubert, P., Parker, N., Myburgh, C., Rabie, H., Van Der Zalm, M.M., Van Zyl, G.U., Preiser, W., Maponga, T.G., Verster, J., Gie, A.G., Andronikou, S., 2022. Fatal SARS-CoV-2 Omicron variant in a young infant: autopsy findings. Pediatr. Pulmonol., 57, 1363-1365.

    13. Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., Zou, W., Zhan, J., Wang, S., Xie, Z., Zhuang, H., Wu, B., Zhong, H., Shao, H., Fang, W., Gao, D., Pei, F., Li, X., He, Z., Xu, D., Shi, X., Anderson, V.M., Leong, A.S., 2005. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med., 202, 415-424.

    14. Hui, K.P.Y., Ho, J.C.W., Cheung, M.C., Ng, K.C., Ching, R.H.H., Lai, K.L., Kam, T.T., Gu, H., Sit, K.Y., Hsin, M.K.Y., Au, T.W.K., Poon, L.L.M., Peiris, M., Nicholls, J.M., Chan, M.C.W., 2022. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature, 603, 715-720.

    15. Kaiser, A.M., Gatto, A., Hanson, K.J., Zhao, R.L., Raj, N., Ozawa, M.G., Seoane, J.A., Bieging-Rolett, K.T., Wang, M., Li, I., Trope, W.L., Liou, D.Z., Shrager, J.B., Plevritis, S.K., Newman, A.M., Van Rechem, C., Attardi, L.D., 2023. p53 governs an AT1 differentiation programme in lung cancer suppression. Nature, 619, 851-859.

    16. Kathiriya, J.J., Brumwell, A.N., Jackson, J.R., Tang, X., Chapman, H.A., 2020. Distinct airway epithelial stem cells hide among club cells but mobilize to promote alveolar regeneration. Cell Stem Cell, 26, 346-358.e344.

    17. Kim, C.F., Jackson, E.L., Woolfenden, A.E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R.T., Jacks, T., 2005. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121, 823-835.

    18. Kobayashi, Y., Tata, A., Konkimalla, A., Katsura, H., Lee, R.F., Ou, J., Banovich, N.E., Kropski, J.A., Tata, P.R., 2020. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol., 22, 934-946.

    19. Kular, J.K., Basu, S., Sharma, R.I., 2014. The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng., 5, 2041731414557112.

    20. Kumar, P.A., Hu, Y., Yamamoto, Y., Hoe, N.B., Wei, T.S., Mu, D., Sun, Y., Joo, L.S., Dagher, R., Zielonka, E.M., Wang De, Y., Lim, B., Chow, V.T., Crum, C.P., Xian, W., Mckeon, F., 2011. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell, 147, 525-538.

    21. Li, J., Wang, Z., Chu, Q., Jiang, K., Li, J., Tang, N., 2018. The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev. Cell, 44, 297-312.e295.

    22. Liu, J., Li, Y., Liu, Q., Yao, Q., Wang, X., Zhang, H., Chen, R., Ren, L., Min, J., Deng, F., Yan, B., Liu, L., Hu, Z., Wang, M., Zhou, Y., 2021. SARS-CoV-2 cell tropism and multiorgan infection. Cell Discov., 7, 17.

    23. Liu, Q., Liu, K., Cui, G., Huang, X., Yao, S., Guo, W., Qin, Z., Li, Y., Yang, R., Pu, W., Zhang, L., He, L., Zhao, H., Yu, W., Tang, M., Tian, X., Cai, D., Nie, Y., Hu, S., Ren, T., Qiao, Z., Huang, H., Zeng, Y.A., Jing, N., Peng, G., Ji, H., Zhou, B., 2019. Lung regeneration by multipotent stem cells residing at the bronchioalveolar-duct junction. Nat. Genet., 51, 728-738.

    24. Liu, Z., Wu, H., Jiang, K., Wang, Y., Zhang, W., Chu, Q., Li, J., Huang, H., Cai, T., Ji, H., Yang, C., Tang, N., 2016. MAPK-mediated YAP activation controls mechanical-tension-induced pulmonary alveolar regeneration. Cell Rep., 16, 1810-1819.

    25. Markl, B., Dintner, S., Schaller, T., Sipos, E., Kling, E., Miller, S., Farfan Lopez, F., Grochowski, P., Reitsam, N., Waidhauser, J., Hirschbuhl, K., Spring, O., Fuchs, A., Wibmer, T., Boor, P., Beer, M., Wylezich, C., 2023. Fatal cases after Omicron BA.1 and BA.2 infection: results of an autopsy study. Int. J. Infect. Dis., 128, 51-57.

    26. Melms, J.C., Biermann, J., Huang, H., Wang, Y., Nair, A., Tagore, S., Katsyv, I., Rendeiro, A.F., Amin, A.D., Schapiro, D., Frangieh, C.J., Luoma, A.M., Filliol, A., Fang, Y., Ravichandran, H., Clausi, M.G., Alba, G.A., Rogava, M., Chen, S.W., Ho, P., Montoro, D.T., Kornberg, A.E., Han, A.S., Bakhoum, M.F., Anandasabapathy, N., Suarez-Farinas, M., Bakhoum, S.F., Bram, Y., Borczuk, A., Guo, X.V., Lefkowitch, J.H., Marboe, C., Lagana, S.M., Del Portillo, A., Tsai, E.J., Zorn, E., Markowitz, G.S., Schwabe, R.F., Schwartz, R.E., Elemento, O., Saqi, A., Hibshoosh, H., Que, J., Izar, B., 2021. A molecular single-cell lung atlas of lethal COVID-19. Nature, 595, 114-119.

    27. Mulka, K.R., Beck, S.E., Solis, C.V., Johanson, A.L., Queen, S.E., Mccarron, M.E., Richardson, M.R., Zhou, R., Marinho, P., Jedlicka, A., Guerrero-Martin, S., Shirk, E.N., Braxton, A.M., Brockhurst, J., Creisher, P.S., Dhakal, S., Brayton, C.F., Veenhuis, R.T., Metcalf Pate, K.A., Karakousis, P.C., Zahnow, C.A., Klein, S.L., Jain, S.K., Tarwater, P.M., Pekosz, A.S., Villano, J.S., Mankowski, J.L., 2022. Progression and resolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in Golden Syrian hamsters. Am. J. Pathol., 192, 195-207.

    28. Parekh, K.R., Nawroth, J., Pai, A., Busch, S.M., Senger, C.N., Ryan, A.L., 2020. Stem cells and lung regeneration. Am. J. Physiol. Cell Physiol., 319, C675-C693.

    29. Rawlins, E.L., Okubo, T., Xue, Y., Brass, D.M., Auten, R.L., Hasegawa, H., Wang, F., Hogan, B.L., 2009. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell, 4, 525-534.

    30. Ray, S., Chiba, N., Yao, C., Guan, X., Mcconnell, A.M., Brockway, B., Que, L., Mcqualter, J.L., Stripp, B.R., 2016. Rare SOX2(+) airway progenitor cells Generate KRT5(+) cells that repopulate damaged alveolar parenchyma following influenza virus infection. Stem Cell Rep., 7, 817-825.

    31. Redente, E.F., Black, B.P., Backos, D.S., Bahadur, A.N., Humphries, S.M., Lynch, D.A., Tuder, R.M., Zemans, R.L., Riches, D.W.H., 2021. Persistent, Progressive pulmonary fibrosis and epithelial remodeling in mice. Am. J. Respir. Cell Mol. Biol., 64, 669-676.

    32. Schwab, C., Merle, U., Schirmacher, P., Longerich, T., 2023. Lethality of SARS-CoV-2 infection-a comparative autopsy study focusing on COVID-19 development and virus variants. Histopathology, 83, 242-251.

    33. Schwensen, H.F., Borreschmidt, L.K., Storgaard, M., Redsted, S., Christensen, S., Madsen, L.B., 2020. Fatal pulmonary fibrosis: a post-COVID-19 autopsy case. J. Clin. Pathol., 74, 400-402.

    34. Shuai, H., Chan, J.F., Hu, B., Chai, Y., Yuen, T.T., Yin, F., Huang, X., Yoon, C., Hu, J.C., Liu, H., Shi, J., Liu, Y., Zhu, T., Zhang, J., Hou, Y., Wang, Y., Lu, L., Cai, J.P., Zhang, A.J., Zhou, J., Yuan, S., Brindley, M.A., Zhang, B.Z., Huang, J.D., To, K.K., Yuen, K.Y., Chu, H., 2022. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature, 603, 693-699.

    35. Simonson, O.E., Mougiakakos, D., Heldring, N., Bassi, G., Johansson, H.J., Dalen, M., Jitschin, R., Rodin, S., Corbascio, M., El Andaloussi, S., Wiklander, O.P., Nordin, J.Z., Skog, J., Romain, C., Koestler, T., Hellgren-Johansson, L., Schiller, P., Joachimsson, P.O., Hagglund, H., Mattsson, M., Lehtio, J., Faridani, O.R., Sandberg, R., Korsgren, O., Krampera, M., Weiss, D.J., Grinnemo, K.H., Le Blanc, K., 2015. In vivo effects of mesenchymal stromal cells in two patients with severe acute respiratory distress syndrome. Stem Cells Transl. Med., 4, 1199-1213.

    36. Solomon, J.J., Heyman, B., Ko, J.P., Condos, R., Lynch, D.A., 2021. CT of post-acute lung complications of COVID-19. Radiology, 301, E383-e395.

    37. Strunz, M., Simon, L.M., Ansari, M., Kathiriya, J.J., Angelidis, I., Mayr, C.H., Tsidiridis, G., Lange, M., Mattner, L.F., Yee, M., Ogar, P., Sengupta, A., Kukhtevich, I., Schneider, R., Zhao, Z., Voss, C., Stoeger, T., Neumann, J.H.L., Hilgendorff, A., Behr, J., O'reilly, M., Lehmann, M., Burgstaller, G., Konigshoff, M., Chapman, H.A., Theis, F.J., Schiller, H.B., 2020. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat. Commun., 11, 3559.

    38. Tian, S., Xiong, Y., Liu, H., Niu, L., Guo, J., Liao, M., Xiao, S.Y., 2020. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod. Pathol., 33, 1007-1014.

    39. Vaughan, A.E., Brumwell, A.N., Xi, Y., Gotts, J.E., Brownfield, D.G., Treutlein, B., Tan, K., Tan, V., Liu, F.C., Looney, M.R., Matthay, M.A., Rock, J.R., Chapman, H.A., 2015. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature, 517, 621-625.

    40. Wang, F., Ting, C., Riemondy, K.A., Douglas, M., Foster, K., Patel, N., Kaku, N., Linsalata, A., Nemzek, J., Varisco, B.M., Cohen, E., Wilson, J.A., Riches, D.W., Redente, E.F., Toivola, D.M., Zhou, X., Moore, B.B., Coulombe, P.A., Omary, M.B., Zemans, R.L., 2023. Regulation of epithelial transitional states in murine and human pulmonary fibrosis. J. Clin. Invest., 15, 133(22): e165612.

    41. Wang, S., Yao, X., Ma, S., Ping, Y., Fan, Y., Sun, S., He, Z., Shi, Y., Sun, L., Xiao, S., Song, M., Cai, J., Li, J., Tang, R., Zhao, L., Wang, C., Wang, Q., Zhao, L., Hu, H., Liu, X., Sun, G., Chen, L., Pan, G., Chen, H., Li, Q., Zhang, P., Xu, Y., Feng, H., Zhao, G.G., Wen, T., Yang, Y., Huang, X., Li, W., Liu, Z., Wang, H., Wu, H., Hu, B., Ren, Y., Zhou, Q., Qu, J., Zhang, W., Liu, G.H., Bian, X.W., 2021. A single-cell transcriptomic landscape of the lungs of patients with COVID-19. Nat. Cell Biol., 23, 1314-1328.

    42. Weiss, D.J., Casaburi, R., Flannery, R., Leroux-Williams, M., Tashkin, D.P., 2013. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest, 143, 1590-1598.

    43. Wu, H., Yu, Y., Huang, H., Hu, Y., Fu, S., Wang, Z., Shi, M., Zhao, X., Yuan, J., Li, J., Yang, X., Bin, E., Wei, D., Zhang, H., Zhang, J., Yang, C., Cai, T., Dai, H., Chen, J., Tang, N., 2020. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell, 180, 107-121.e117.

    44. Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., Tai, Y., Bai, C., Gao, T., Song, J., Xia, P., Dong, J., Zhao, J., Wang, F.S., 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 8, 420-422.

    45. Zacharias, W.J., Frank, D.B., Zepp, J.A., Morley, M.P., Alkhaleel, F.A., Kong, J., Zhou, S., Cantu, E., Morrisey, E.E., 2018. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature, 555, 251-255.

    46. Zhao, L., Wang, X., Xiong, Y., Fan, Y., Zhou, Y., Zhu, W., 2021. Correlation of autopsy pathological findings and imaging features from 9 fatal cases of COVID-19 pneumonia. Medicine (Baltim.), 100, e25232.

    47. Zheng, D., Limmon, G.V., Yin, L., Leung, N.H., Yu, H., Chow, V.T., Chen, J., 2012. Regeneration of alveolar type I and II cells from Scgb1a1-expressing cells following severe pulmonary damage induced by bleomycin and influenza. PLoS One, 7, e48451.

    48. Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F., Shi, Z.L., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270-273.

    49. Zuo, W., Zhang, T., Wu, D.Z., Guan, S.P., Liew, A.A., Yamamoto, Y., Wang, X., Lim, S.J., Vincent, M., Lessard, M., Crum, C.P., Xian, W., Mckeon, F., 2015. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature, 517, 616-620.

  • 加载中

Figures(1)

Article Metrics

Article views(246) PDF downloads(1) Cited by()

Related
Proportional views

    Crucial role played by CK8+ cells in mediating alveolar injury remodeling for patients with COVID-19

      Corresponding author: Yiwu Zhou, zhouyiwu@hust.edu.cn
      Corresponding author: Manli Wang, wangml@wh.iov.cn
    • a. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China;
    • b. Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430010, China;
    • c. University of the Chinese Academy of Sciences, Beijing, 100049, China

    Abstract: The high risk of SARS-CoV-2 infection and reinfection and the occurrence of post-acute pulmonary sequelae have highlighted the importance of understanding the mechanism underlying lung repair after injury. To address this concern, comparative and systematic analyses of SARS-CoV-2 infection in COVID-19 patients and animals were conducted. In the lungs of nine patients who died of COVID-19 and one recovered from COVID-19 but died of unrelated disease in early 2020, damage-related transient progenitor (DATP) cells expressing CK8 marker proliferated significantly. These CK8+ DATP cells were derived from bronchial CK5+ basal cells. However, they showed different cell fate toward differentiation into type I alveolar cells in the deceased and convalescent patients, respectively. By using a self-limiting hamster infection model mimicking the dynamic process of lung injury remodeling in mild COVID-19 patients, the accumulation and regression of CK8+ cell marker were found to be closely associated with the disease course. Finally, we examined the autopsied lungs of two patients who died of infection by the recent Omicron variant and found that they only exhibited mild pathological injury with no CK8+ cell proliferation. These results indicate a clear pulmonary cell remodeling route and suggest that CK8+ DATP cells play a primary role in mediating alveolar remodeling, highlighting their potential applications as diagnostic markers and therapeutic targets.

    Figure (1)  Reference (49) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return