Citation: Xuanxuan Li, Zefeng Dong, Jiaming Li, Chuanran Dou, Deyu Tian, Zhenghai Ma, Wenjun Liu, George F. Gao, Yuhai Bi. Genetic characteristics of H1N1 influenza virus outbreak in China in early 2023 .VIROLOGICA SINICA, 2024, 39(3) : 520-523.  http://dx.doi.org/10.1016/j.virs.2024.05.003

Genetic characteristics of H1N1 influenza virus outbreak in China in early 2023

  • Corresponding author: Yuhai Bi, beeyh@im.ac.cn
  • Received Date: 25 October 2023
    Accepted Date: 09 May 2024
    Available online: 18 May 2024
  • Highlights
    1. H1N1 strains were collected from Hunan and Jiangsu provinces in early 2023 following the optimized COVID-19 strategy.
    2. Phylogenic analysis revealed that the epidemic H1N1 viruses fell into different HA clades compared to vaccine strains.
    3. Mutations on HA antigenic sites suggest antigenic drift in the epidemic H1N1 viruses versus vaccine strains.
    4. A potential mismatch was found between recommended vaccine strains and the epidemic H1N1 viruses.
    5. The expeditious, precise, and personalized vaccine update program for influenza virus may need to be put on the agenda.

  • 加载中
  • 10.1016j.virs.2024.05.003-ESM.docx
    1. Bi,Y., Chen, Q., Wang, Q., Chen, J., Jin, T., Wong, G., Quan, C., Liu, J., Wu, J., Yin, R., Zhao, L., Li, M., Ding, Z., Zou, R., Xu, W., Li, H., Wang, H., Tian, K., Fu, G., Yu, H., Alexander, S., Li, S., Xu, B., Yu, H., Luo, T., Lu, X., Xu, X., Luo, Y., Liu, Y., Shi, W., Liu, D., Gao, G.F., 2016. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe 20, 810-821.

    2. Bi, Y., Li, J., Li, S., Fu, G., Jin, T., Zhang, C., Yang, Y., Ma, Z., Tian, W., Li, J.D., Xiao, S., Li, L., Yin, R., Zhang, Y., Wang, L., Qin, Y., Yao, Z., Meng, F., Hu, D., Li, D., Wong, G., Liu, F., Lv, N., Wang, L., Fu, L., Yang, Y., Peng, Y., Ma, J., Sharshov, K., Shestopalov, A., Gulyaeva, M., Gao, G.F., Chen, J., Shi, Y., Liu, W.J., Chu, D., Huang, Y., Liu, Y., Liu, L., Liu, W., Chen, Q., Shi, W., 2020. Dominant subtype switch in avian influenza viruses during 2016-2019 in China. Nat. Commun. 11, 5909.

    3. Hay, A.J., Gregory, V., Douglas, A.R., Lin, Y., 2001. The evolution of human influenza viruses. Phil. Trans. Roy. Soc. Lond. B 356(1416), 1861-1870.

    4. Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.

    5. Liu, M., Liu, J., Song, W., Peng, Y., Ding, X., Deng, L., Jiang, T., 2023. Development of PREDAC-H1pdm to model the antigenic evolution of influenza A/(H1N1) pdm09 viruses. Virol. Sin. 38, 541-548.

    6. Mohan, T., Nguyen, H.T., Kniss, K., Mishin, V.P., Merced-Morales, A.A., Laplante, J., St George, K., Blevins, P., Chesnokov, A., De La Cruz, J.A., Kondor, R., Wentworth, D.E., Gubareva, L.V., 2021. Cluster of oseltamivir-resistant and hemagglutinin antigenically drifted influenza A (H1N1) pdm09 viruses, Texas, USA, January 2020. Emerg. Infect. Dis. 27, 1953-1957.

    7. Naffakh, N., Werf, S.V.D., 2009. April 2009: an outbreak of swine-origin influenza A (H1N1) virus with evidence for human-to-human transmission. Microb. Infect. 11, 725-728.

    8. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, 2009. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med. 360, 2605-2615.

    9. Olsen, S.J., Winn, A.K., Budd, A.P., Prill, M.M., Steel, J., Midgley, C.M., Kniss, K., Burns, E., Rowe, T., Foust, A., Jasso, G., Merced-Morales, A., Davis, C.T., Jang, Y., Jones, J., Daly, P., Gubareva, L., Barnes, J., Kondor, R., Sessions, W., Smith, C., Wentworth, D.E., Garg, S., Havers, F.P., Fry, A.M., Hall, A.J., Brammer, L., Silk, B.J., 2021. Changes in influenza and other respiratory virus activity during the COVID-19 pandemic-United States, 2020-2021. MMWR Morb. Mortal. Wkly. Rep. 70, 1013-1019.

    10. Palese, P., 2004. Influenza: old and new threats. Nat. Med. 10(Suppl. 12), S82-S87.

    11. Razzaghi, H., Srivastav, A., Perio, M.A., Laney, A.S., Black, C.L., 2022. Influenza and COVID-19 vaccination coverage among health care personnel-United States, 2021-22. MMWR Morb. Mortal. Wkly. Rep. 71, 1319-1326.

    12. Sooryanarain, H., Elankumaran, S., 2015. Environmental role in influenza virus outbreaks. Annu. Rev. Anim. Biosci. 3(1), 347-373.

    13. Whitley, R.J., Boucher, C.A., Lina, B., Nguyen-Van-Tam, J.S., Osterhaus, A., Schutten, M., Monto, A.S., 2013. Global assessment of resistance to neuraminidase inhibitors, 2008-2011: the influenza resistance information study (IRIS). Clin. Infect. Dis. 56, 1197-1205.

    14. Wilson, I.A, Skehel, J.J., Wiley, D.C., 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289(5796), 366-373.

    15. World Health Organization (WHO), 2023a. Influenza Laboratory Surveillance Information. [accessed 13 June 2023; Available from: https://www.who.int/tools/flunet.

    16. World Health Organization (WHO), 2023b. Recommended Composition of Influenza Virus Vaccines for Use in the 2023-2024 Northern Hemisphere Influenza Season. [accessed 13 June 2023; Available from: https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2023-2024-northern-hemisphere-influenza-season.

    17. Xu, H., Palpant, T., Weinberger, C., Shaw, D.E., 2022. Characterizing receptor flexibility to predict mutations that lead to human adaptation of influenza hemagglutinin. J. Chem. Theor. Comput. 18, 4995-5005.

    18. Yang, J., Gong, Y., Zhang, C., Sun, J., Wong, G., Shi, W., Liu, W., Gao, G.F., Bi, Y., 2022. Co-existence and co-infection of influenza a viruses and coronaviruses: public health challenges. Innovation. 3, 100306.

  • 加载中

Figures(1)

Article Metrics

Article views(239) PDF downloads(2) Cited by()

Related
Proportional views

    Genetic characteristics of H1N1 influenza virus outbreak in China in early 2023

      Corresponding author: Yuhai Bi, beeyh@im.ac.cn
    • a. College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China;
    • b. CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China;
    • c. Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China;
    • d. Lafayette College, Easton, PA 18042, USA;
    • e. University of Chinese Academy of Sciences, Beijing, 100049, China;
    • f. D. H. Chen School of Universal Health, Zhejiang University, Hangzhou 310058, China

    Abstract: Highlights
    1. H1N1 strains were collected from Hunan and Jiangsu provinces in early 2023 following the optimized COVID-19 strategy.
    2. Phylogenic analysis revealed that the epidemic H1N1 viruses fell into different HA clades compared to vaccine strains.
    3. Mutations on HA antigenic sites suggest antigenic drift in the epidemic H1N1 viruses versus vaccine strains.
    4. A potential mismatch was found between recommended vaccine strains and the epidemic H1N1 viruses.
    5. The expeditious, precise, and personalized vaccine update program for influenza virus may need to be put on the agenda.

    Figure (1)  Reference (18) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return