For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: Zhihao Zhang, Wei Hou, Shuliang Chen. Updates on CRISPR-based gene editing in HIV-1/AIDS therapy [J].VIROLOGICA SINICA.

Updates on CRISPR-based gene editing in HIV-1/AIDS therapy

  • Although tremendous efforts have been made to prevent and treat HIV-1 infection, HIV-1/AIDS remains a major threat to global human health. The combination antiretroviral therapy (cART), although able to suppress HIV-1 replication, cannot eliminate the proviral DNA integrated into the human genome and thus requires lifelong treatment that may lead to various side effects. In recent years, clustered regularly interspaced short palindromic repeat (CRISPR)-associated nuclease 9 (Cas9) related gene-editing systems have been developed and designed as effective ways to treat HIV-1 infection. However, new gene-targeting tools derived from or functioning like CRISPR/Cas9, including base editor, prime editing, SHERLOCK, DETECTR, PAC-MAN, ABACAS, pfAGO, have been developed and optimized for pathogens detection and diseases correction. Here, we summarize recent studies on HIV-1/AIDS gene therapy and provide more gene-editing targets based on studies relating to the molecular mechanism of HIV-1 infection. We also identify the strategies and potential applications of these new gene-editing technologies for HIV-1/AIDS treatment in the future. Moreover, we discuss- the caveats and problems that should be addressed before the clinical use of these versatile CRISPR- based gene targeting tools. Finally, we offer alternative solutions to improve the practice of gene targeting in HIV-1/AIDS gene therapy.

  • 加载中
    1. Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, Chemparathy A, Chmura S, Heaton NS, Debs R, Pande T, Endy D, La Russa MF, Lewis DB, Qi LS. Development of CRISPR as an Antiviral Strategy to Combat SARS‐CoV‐2 and Influenza. Cell. 2020;181:865‐876.e812.

    2. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA. CC CKR5: a RANTES, MIP‐1alpha, MIP‐1beta receptor as a fusion cofactor for macrophage‐tropic HIV‐1. Science. 1996;272:1955‐1958.

    3. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search‐and‐replace genome editing without double‐strand breaks or donor DNA. Nature. 2019;576:149‐157.

    4. Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, Pomerantz RJ. Cellular reservoirs of HIV‐1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. Aids. 1996;10:573‐585.

    5. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709‐1712.

    6. Bayer R, Levine C, Murray TH. Guidelines for Confidentiality in Research on AIDS. AIDS Res. 1983;1:275‐297.

    7. Bellamy‐McIntyre AK, Lay CS, Baär S, Maerz AL, Talbo GH, Drummer HE, Poumbourios P. Functional links between the fusion peptide‐proximal polar segment and membrane‐proximal region of human immunodeficiency virus gp41 in distinct phases of membrane fusion. J Biol Chem. 2007;282:23104‐23116.

    8. Bleul CC, Farzan M, Choe H, Parolin C, Clark‐Lewis I, Sodroski J, Springer TA. The lymphocyte chemoattractant SDF‐1 is a ligand for LESTR/fusin and blocks HIV‐1 entry. Nature. 1996;382:829‐833.

    9. Bogerd HP, Kornepati AV, Marshall JB, Kennedy EM, Cullen BR. Specific induction of endogenous viral restriction factors using CRISPR/Cas‐derived transcriptional activators. Proc Natl Acad Sci U S A. 2015;112:E7249‐7256.

    10. CDC. Update on acquired immune deficiency syndrome (AIDS)‐‐United States. MMWR Morb Mortal Wkly Rep. 1982;31:507‐508, 513‐504.

    11. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA. Enhanced proofreading governs CRISPR‐Cas9 targeting accuracy. Nature. 2017;550:407‐410.

    12. Chen S, Yu X, Guo D. CRISPR‐Cas Targeting of Host Genes as an Antiviral Strategy. Viruses. 2018;10.

    13. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA‐guided endonuclease. Nat Biotechnol. 2013;31:230‐232.

    14. Chougui G, Munir‐Matloob S, Matkovic R, Martin MM, Morel M, Lahouassa H, Leduc M, Ramirez BC, Etienne L, Margottin‐Goguet F. HIV‐2/SIV viral protein X counteracts HUSH repressor complex. Nat Microbiol. 2018;3:891‐897.

    15. Chun TW, Nickle DC, Justement JS, Meyers JH, Roby G, Hallahan CW, Kottilil S, Moir S, Mican JM, Mullins JI, Ward DJ, Kovacs JA, Mannon PJ, Fauci AS. Persistence of HIV in gut‐associated lymphoid tissue despite long‐term antiretroviral therapy. J Infect Dis. 2008;197:714‐720.

    16. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819‐823.

    17. Deeks SG. HIV: Shock and kill. Nature. 2012;487:439‐440.

    18. Désaulniers K, Ortiz L, Dufour C, Claudel A, Plourde MB, Merindol N, Berthoux L. Editing of the TRIM5 Gene Decreases the Permissiveness of Human T Lymphocytic Cells to HIV‐1. Viruses. 2020;13.

    19. Doman JL, Raguram A, Newby GA, Liu DR. Evaluation and minimization of Cas9‐independent off‐target DNA editing by cytosine base editors. Nat Biotechnol. 2020;38:620‐628.

    20. Dufour C, Claudel A, Joubarne N, Merindol N, Maisonnet T, Masroori N, Plourde MB, Berthoux L. Editing of the human TRIM5 gene to introduce mutations with the potential to inhibit HIV‐1. PLoS One. 2018;13:e0191709.

    21. Durand CM, Blankson JN, Siliciano RF. Developing strategies for HIV‐1 eradication. Trends Immunol. 2012;33:554‐562.

    22. East‐Seletsky A, O'Connell MR, Burstein D, Knott GJ, Doudna JA. RNA Targeting by Functionally Orthogonal Type VI‐A CRISPR‐Cas Enzymes. Mol Cell. 2017;66:373‐383.e373.

    23. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV‐1 provirus. Sci Rep. 2013;3:2510.

    24. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, Smith K, Lisziewicz J, Lori F, Flexner C, Quinn TC, Chaisson RE, Rosenberg E, Walker B, Gange S, Gallant J, Siliciano RF. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV‐1, even in patients on effective combination therapy. Nat Med. 1999;5:512‐517.

    25. Freed EO, Myers DJ, Risser R. Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc Natl Acad Sci U S A. 1990;87:4650‐4654.

    26. Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS, Yozwiak NL, Zhang F, Sabeti PC. Programmable Inhibition and Detection of RNA Viruses Using Cas13. Mol Cell. 2019;76:826‐837.e811.

    27. Gao Z, Fan M, Das AT, Herrera‐Carrillo E, Berkhout B. Extinction of all infectious HIV in cell culture by the CRISPR‐Cas12a system with only a single crRNA. Nucleic Acids Res. 2020;48:5527‐5539.

    28. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature. 2017;551:464‐471.

    29. Gonzalez‐Enriquez GV, Escoto‐Delgadillo M, Vazquez‐Valls E, Torres‐Mendoza BM. SERINC as a Restriction Factor to Inhibit Viral Infectivity and the Interaction with HIV. J Immunol Res. 2017;2017:1548905.

    30. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F. Nucleic acid detection with CRISPR‐Cas13a/C2c2. Science. 2017;356:438‐442.

    31. Grünewald J, Zhou R, Lareau CA, Garcia SP, Iyer S, Miller BR, Langner LM, Hsu JY, Aryee MJ, Joung JK. A dual‐deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol. 2020;38:861‐864.

    32. Guo ML, Buch S. Neuroinflammation & pre‐mature aging in the context of chronic HIV infection and drug abuse: Role of dysregulated autophagy. Brain Res. 2019;1724:146446.

    33. Gupta RK, Abdul‐Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, Martinez‐Picado J, Nijhuis M, Wensing AMJ, Lee H, Grant P, Nastouli E, Lambert J, Pace M, Salasc F, Monit C, Innes AJ, Muir L, Waters L, Frater J, Lever AML, Edwards SG, Gabriel IH, Olavarria E. HIV‐1 remission following CCR5Δ32/Δ32 haematopoietic stem‐cell transplantation. Nature. 2019;568:244‐248.

    34. Hou P, Chen S, Wang S, Yu X, Chen Y, Jiang M, Zhuang K, Ho W, Hou W, Huang J, Guo D. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV‐1 infection. Sci Rep. 2015;5:15577.

    35. Hsu JY, Grünewald J, Szalay R, Shih J, Anzalone AV, Lam KC, Shen MW, Petri K, Liu DR, Joung JK, Pinello L. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat Commun. 2021;12:1034.

    36. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez‐Carbonell D, Garcia‐Mesa Y, Karn J, Mo X, Khalili K. RNA‐directed gene editing specifically eradicates latent and prevents new HIV‐1 infection. Proc Natl Acad Sci U S A. 2014;111:11461‐11466.

    37. Hultquist JF, Schumann K, Woo JM, Manganaro L, McGregor MJ, Doudna J, Simon V, Krogan NJ, Marson A. A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV‐Host Interactions in Primary Human T Cells. Cell Rep. 2016;17:1438‐1452.

    38. Hunt PW, Harrigan PR, Huang W, Bates M, Williamson DW, McCune JM, Price RW, Spudich SS, Lampiris H, Hoh R, Leigler T, Martin JN, Deeks SG. Prevalence of CXCR4 tropism among antiretroviral‐treated HIV‐1‐infected patients with detectable viremia. J Infect Dis. 2006;194:926‐930.

    39. Hütter G. More on shift of HIV tropism in stem‐cell transplantation with CCR5 delta32/delta32 mutation. N Engl J Med. 2014;371:2437‐2438.

    40. Hütter G, Bodor J, Ledger S, Boyd M, Millington M, Tsie M, Symonds G. CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape. Viruses. 2015;7:4186‐4203.

    41. Ji H, Jiang Z, Lu P, Ma L, Li C, Pan H, Fu Z, Qu X, Wang P, Deng J, Yang X, Wang J, Zhu H. Specific Reactivation of Latent HIV‐1 by dCas9‐SunTag‐VP64‐mediated Guide RNA Targeting the HIV‐1 Promoter. Mol Ther. 2016;24:508‐521.

    42. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816‐821.

    43. Joyce MG, Sankhala RS, Chen WH, Choe M, Bai H, Hajduczki A, Yan L, Sterling SL, Peterson CE, Green EC, Smith C, de Val N, Amare M, Scott P, Laing ED, Broder CC, Rolland M, Michael NL, Modjarrad K. A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS‐CoV‐2 Spike Glycoprotein. bioRxiv. 2020;10.1101/2020.03.15.992883.

    44. Kang H, Minder P, Park MA, Mesquitta WT, Torbett BE, Slukvin, Ⅱ. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5‐tropic HIV‐1 Virus. Mol Ther Nucleic Acids. 2015;4:e268.

    45. Keele BF, Giorgi EE, Salazar‐Gonzalez JF, Decker JM, Pham KT, Salazar MG, Sun C, Grayson T, Wang S, Li H, Wei X, Jiang C, Kirchherr JL, Gao F, Anderson JA, Ping LH, Swanstrom R, Tomaras GD, Blattner WA, Goepfert PA, Kilby JM, Saag MS, Delwart EL, Busch MP, Cohen MS, Montefiori DC, Haynes BF, Gaschen B, Athreya GS, Lee HY, Wood N, Seoighe C, Perelson AS, Bhattacharya T, Korber BT, Hahn BH, Shaw GM. Identification and characterization of transmitted and early founder virus envelopes in primary HIV‐1 infection. Proc Natl Acad Sci U S A. 2008;105:7552‐7557.

    46. Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14:2986‐3012.

    47. Kim HK, Yu G, Park J, Min S, Lee S, Yoon S, Kim HH. Predicting the efficiency of prime editing guide RNAs in human cells. Nat Biotechnol. 2021;39:198‐206.

    48. Kim V, Mears BM, Powell BH, Witwer KW. Mutant Cas9‐transcriptional activator activates HIV‐1 in U1 cells in the presence and absence of LTR‐specific guide RNAs. Matters (Zur). 2017;2017.

    49. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK. High‐fidelity CRISPR‐Cas9 nucleases with no detectable genome‐wide off‐target effects. Nature. 2016;529:490‐495.

    50. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double‐stranded DNA cleavage. Nature. 2016;533:420‐424.

    51. Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome Engineering with RNA‐Targeting Type VI‐D CRISPR Effectors. Cell. 2018;173:665‐676.e614.

    52. Krasnopolsky S, Novikov A, Kuzmina A, Taube R. CRISPRi‐mediated depletion of Spt4 and Spt5 reveals a role for DSIF in the control of HIV latency. Biochim Biophys Acta Gene Regul Mech. 2021;1864:194656.

    53. Kushawah G, Hernandez‐Huertas L, Abugattas‐Nuñez Del Prado J, Martinez‐Morales JR, DeVore ML, Hassan H, Moreno‐Sanchez I, Tomas‐Gallardo L, Diaz‐Moscoso A, Monges DE, Guelfo JR, Theune WC, Brannan EO, Wang W, Corbin TJ, Moran AM, Sánchez Alvarado A, Málaga‐Trillo E, Takacs CM, Bazzini AA, Moreno‐Mateos MA. CRISPR‐Cas13d Induces Efficient mRNA Knockdown in Animal Embryos. Dev Cell. 2020;54:805‐817.e807.

    54. Lahaye X, Gentili M, Silvin A, Conrad C, Picard L, Jouve M, Zueva E, Maurin M, Nadalin F, Knott GJ, Zhao B, Du F, Rio M, Amiel J, Fox AH, Li P, Etienne L, Bond CS, Colleaux L, Manel N. NONO Detects the Nuclear HIV Capsid to Promote cGAS‐Mediated Innate Immune Activation. Cell. 2018;175:488‐501.e422.

    55. Lay CS, Ludlow LE, Stapleton D, Bellamy‐McIntyre AK, Ramsland PA, Drummer HE, Poumbourios P. Role for the terminal clasp of HIV‐1 gp41 glycoprotein in the initiation of membrane fusion. J Biol Chem. 2011;286:41331‐41343.

    56. Lebbink RJ, de Jong DC, Wolters F, Kruse EM, van Ham PM, Wiertz EJ, Nijhuis M. A combinational CRISPR/Cas9 gene‐editing approach can halt HIV replication and prevent viral escape. Sci Rep. 2017;7:41968.

    57. Li C, Guan X, Du T, Jin W, Wu B, Liu Y, Wang P, Hu B, Griffin GE, Shattock RJ, Hu Q. Inhibition of HIV‐1 infection of primary CD4+ T‐cells by gene editing of CCR5 using adenovirus‐delivered CRISPR/Cas9. J Gen Virol. 2015;96:2381‐2393.

    58. Li H, Wang S, Dong X, Li Q, Li M, Li J, Guo Y, Jin X, Zhou Y, Song H, Kou Z. CRISPR‐Cas13a Cleavage of Dengue Virus NS3 Gene Efficiently Inhibits Viral Replication. Mol Ther Nucleic Acids. 2020;19:1460‐1469.

    59. Li Y, Li S, Wang J, Liu G. CRISPR/Cas Systems towards Next‐Generation Biosensing. Trends Biotechnol. 2019;37:730‐743.

    60. Li Z, Hajian C, Greene WC. Identification of unrecognized host factors promoting HIV‐1 latency. PLoS Pathog. 2020;16:e1009055.

    61. Li Z, Wu J, Chavez L, Hoh R, Deeks SG, Pillai SK, Zhou Q. Reiterative Enrichment and Authentication of CRISPRi Targets (REACT) identifies the proteasome as a key contributor to HIV‐1 latency. PLoS Pathog. 2019;15:e1007498.

    62. Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang CJ, Esteban CR, Young J, Izpisua Belmonte JC. Use of the CRISPR/Cas9 system as an intracellular defense against HIV‐1 infection in human cells. Nat Commun. 2015;6:6413.

    63. Limsirichai P, Gaj T, Schaffer DV. CRISPR‐mediated Activation of Latent HIV‐1 Expression. Mol Ther. 2016;24:499‐507.

    64. Lin Q, Zong Y, Xue C, Wang S, Jin S, Zhu Z, Wang Y, Anzalone AV, Raguram A, Doman JL, Liu DR, Gao C. Prime genome editing in rice and wheat. Nat Biotechnol. 2020;38:582‐585.

    65. Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G. CRISPR/Cas9 systems have off‐target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 2014;42:7473‐7485.

    66. Liu L, Li X, Wang J, Wang M, Chen P, Yin M, Li J, Sheng G, Wang Y. Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities. Cell. 2017;168:121‐134.e112.

    67. Liu S, Wang Q, Yu X, Li Y, Guo Y, Liu Z, Sun F, Hou W, Li C, Wu L, Guo D, Chen S. HIV‐1 inhibition in cells with CXCR4 mutant genome created by CRISPR‐Cas9 and piggyBac recombinant technologies. Sci Rep. 2018;8:8573.

    68. Liu Y, Zhou J, Pan JA, Mabiala P, Guo D. A novel approach to block HIV‐1 coreceptor CXCR4 in non‐toxic manner. Mol Biotechnol. 2014;56:890‐902.

    69. Liu Z, Chen S, Jin X, Wang Q, Yang K, Li C, Xiao Q, Hou P, Liu S, Wu S, Hou W, Xiong Y, Kong C, Zhao X, Wu L, Li C, Sun G, Guo D. Genome editing of the HIV co‐receptors CCR5 and CXCR4 by CRISPR‐Cas9 protects CD4(+) T cells from HIV‐1 infection. Cell Biosci. 2017;7:47.

    70. Liu Z, Liang J, Chen S, Wang K, Liu X, Liu B, Xia Y, Guo M, Zhang X, Sun G, Tian G. Genome editing of CCR5 by AsCpf1 renders CD4(+)T cells resistance to HIV‐1 infection. Cell Biosci. 2020;10:85.

    71. Liu Z, Torresilla C, Xiao Y, Nguyen PT, Caté C, Barbosa K, Rassart É, Cen S, Bourgault S, Barbeau B. HIV‐1 Antisense Protein of Different Clades Induces Autophagy and Associates with the Autophagy Factor p62. J Virol. 2019;93.

    72. Lu W, Chen S, Yu J, Behrens R, Wiggins J, Sherer N, Liu SL, Xiong Y, Xiang SH, Wu L. The Polar Region of the HIV‐1 Envelope Protein Determines Viral Fusion and Infectivity by Stabilizing the gp120‐gp41 Association. J Virol. 2019;93.

    73. Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, Huang M, Yi X, Liang M, Wang Y, Shen H, Tong R, Wang W, Li L, Song J, Li J, Su X, Ding Z, Gong Y, Zhu J, Wang Y, Zou B, Zhang Y, Li Y, Zhou L, Liu Y, Yu M, Wang Y, Zhang X, Yin L, Xia X, Zeng Y, Zhou Q, Ying B, Chen C, Wei Y, Li W, Mok T. Safety and feasibility of CRISPR‐edited T cells in patients with refractory non‐small‐cell lung cancer. Nat Med. 2020;26:732‐740.

    74. Mahas A, Aman R, Mahfouz M. CRISPR‐Cas13d mediates robust RNA virus interference in plants. Genome Biol. 2019;20:263.

    75. Makarova KS, Koonin EV. Annotation and Classification of CRISPR‐Cas Systems. Methods Mol Biol. 2015;1311:47‐75.

    76. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA‐guided human genome engineering via Cas9. Science. 2013;339:823‐826.

    77. Mancuso P, Chen C, Kaminski R, Gordon J, Liao S, Robinson JA, Smith MD, Liu H, Sariyer IK, Sariyer R, Peterson TA, Donadoni M, Williams JB, Siddiqui S, Bunnell BA, Ling B, MacLean AG, Burdo TH, Khalili K. CRISPR based editing of SIV proviral DNA in ART treated non‐human primates. Nat Commun. 2020;11:6065.

    78. Mandal PK, Ferreira LM, Collins R, Meissner TB, Boutwell CL, Friesen M, Vrbanac V, Garrison BS, Stortchevoi A, Bryder D, Musunuru K, Brand H, Tager AM, Allen TM, Talkowski ME, Rossi DJ, Cowan CA. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. 2014;15:643‐652.

    79. Marin M, Kushnareva Y, Mason CS, Chanda SK, Melikyan GB. HIV‐1 Fusion with CD4+ T cells Is Promoted by Proteins Involved in Endocytosis and Intracellular Membrane Trafficking. Viruses. 2019;11.

    80. Miller SM, Wang T, Randolph PB, Arbab M, Shen MW, Huang TP, Matuszek Z, Newby GA, Rees HA, Liu DR. Continuous evolution of SpCas9 variants compatible with non‐G PAMs. Nat Biotechnol. 2020;38:471‐481.

    81. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122:23‐36.

    82. Narasipura SD, Kim S, Al‐Harthi L. Epigenetic regulation of HIV‐1 latency in astrocytes. J Virol. 2014;88:3031‐3038.

    83. Negahdaripour M, Nezafat N, Hajighahramani N, Rahmatabadi SS, Ghasemi Y. Investigating CRISPR‐Cas systems in Clostridium botulinum via bioinformatics tools. Infect Genet Evol. 2017;54:355‐373.

    84. Olson A, Basukala B, Lee S, Gagne M, Wong WW, Henderson AJ. Targeted Chromatinization and Repression of HIV‐1 Provirus Transcription with Repurposed CRISPR/Cas9. Viruses. 2020;12.

    85. Ophinni Y, Miki S, Hayashi Y, Kameoka M. Multiplexed tat‐Targeting CRISPR‐Cas9 Protects T Cells from Acute HIV‐1 Infection with Inhibition of Viral Escape. Viruses. 2020;12.

    86. Ortinski PI, O'Donovan B, Dong X, Kantor B. Integrase‐Deficient Lentiviral Vector as an All‐in‐One Platform for Highly Efficient CRISPR/Cas9‐Mediated Gene Editing. Mol Ther Methods Clin Dev. 2017;5:153‐164.

    87. Poveda E. HIV tropism shift: new paradigm on cell therapy strategies for HIV cure. AIDS Rev. 2015;17:65.

    88. Qi C, Li D, Jiang X, Jia X, Lu L, Wang Y, Sun J, Shao Y, Wei M. Inducing CCR5Δ32/Δ32 Homozygotes in the Human Jurkat CD4+ Cell Line and Primary CD4+ Cells by CRISPR‐Cas9 Genome‐Editing Technology. Mol Ther Nucleic Acids. 2018;12:267‐274.

    89. Rosa A, Chande A, Ziglio S, De Sanctis V, Bertorelli R, Goh SL, McCauley SM, Nowosielska A, Antonarakis SE, Luban J, Santoni FA, Pizzato M. HIV‐1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature. 2015;526:212‐217.

    90. Saayman SM, Lazar DC, Scott TA, Hart JR, Takahashi M, Burnett JC, Planelles V, Morris KV, Weinberg MS. Potent and Targeted Activation of Latent HIV‐1 Using the CRISPR/dCas9 Activator Complex. Mol Ther. 2016;24:488‐498.

    91. Safari F, Afarid M, Rastegari B, Borhani‐Haghighi A, Barekati‐Mowahed M, Behzad‐Behbahani A. CRISPR systems: Novel approaches for detection and combating COVID‐19. Virus Res. 2021;294:198282.

    92. Safari F, Hatam G, Behbahani AB, Rezaei V, Barekati‐Mowahed M, Petramfar P, Khademi F. CRISPR System: A High‐throughput Toolbox for Research and Treatment of Parkinson's Disease. Cell Mol Neurobiol. 2020;40:477‐493.

    93. Sakata RC, Ishiguro S, Mori H, Tanaka M, Tatsuno K, Ueda H, Yamamoto S, Seki M, Masuyama N, Nishida K, Nishimasu H, Arakawa K, Kondo A, Nureki O, Tomita M, Aburatani H, Yachie N. Base editors for simultaneous introduction of C‐to‐T and A‐to‐G mutations. Nat Biotechnol. 2020;38:865‐869.

    94. Scott T, Urak R, Soemardy C, Morris KV. Improved Cas9 activity by specific modifications of the tracrRNA. Sci Rep. 2019;9:16104.

    95. Sessions KJ, Chen YY, Hodge CA, Hudson TR, Eszterhas SK, Hayden MS, Howell AL. Analysis of CRISPR/Cas9 Guide RNA Efficiency and Specificity Against Genetically Diverse HIV‐1 Isolates. AIDS Res Hum Retroviruses. 2020;36:862‐874.

    96. Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV. Discovery and Functional Characterization of Diverse Class 2 CRISPR‐Cas Systems. Mol Cell. 2015;60:385‐397.

    97. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, Kovacs C, Gange SJ, Siliciano RF. Long‐term follow‐up studies confirm the stability of the latent reservoir for HIV‐1 in resting CD4+ T cells. Nat Med. 2003;9:727‐728.

    98. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351:84‐88.

    99. Smith PD, Meng G, Salazar‐Gonzalez JF, Shaw GM. Macrophage HIV‐1 infection and the gastrointestinal tract reservoir. J Leukoc Biol. 2003;74:642‐649.

    100. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder‐Scholl G, Plesa G, Hwang WT, Levine BL, June CH. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:901‐910.

    101. Thakur KT, Boubour A, Saylor D, Das M, Bearden DR, Birbeck GL. Global HIV neurology: a comprehensive review. Aids. 2019;33:163‐184.

    102. Wang Q, Chen S, Xiao Q, Liu Z, Liu S, Hou P, Zhou L, Hou W, Ho W, Li C, Wu L, Guo D. Genome modification of CXCR4 by Staphylococcus aureus Cas9 renders cells resistance to HIV‐1 infection. Retrovirology. 2017;14:51.

    103. Wang Q, Liu S, Liu Z, Ke Z, Li C, Yu X, Chen S, Guo D. Genome scale screening identification of SaCas9/gRNAs for targeting HIV‐1 provirus and suppression of HIV‐1 infection. Virus Res. 2018;250:21‐30.

    104. Wang W, Ye C, Liu J, Zhang D, Kimata JT, Zhou P. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV‐1 infection. PLoS One. 2014;9:e115987.

    105. Wang Z, Pan Q, Gendron P, Zhu W, Guo F, Cen S, Wainberg MA, Liang C. CRISPR/Cas9‐Derived Mutations Both Inhibit HIV‐1 Replication and Accelerate Viral Escape. Cell Rep. 2016;15:481‐489.

    106. Xiao Q, Chen S, Wang Q, Liu Z, Liu S, Deng H, Hou W, Wu D, Xiong Y, Li J, Guo D. CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4(+) T cells and hematopoietic stem/progenitor cells promotes HIV‐1 resistance and CD4(+) T cell enrichment in humanized mice. Retrovirology. 2019a;16:15.

    107. Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9‐Based Gene Editing in HIV‐1/AIDS Therapy. Front Cell Infect Microbiol. 2019b;9:69.

    108. Xu L, Wang J, Liu Y, Xie L, Su B, Mou D, Wang L, Liu T, Wang X, Zhang B, Zhao L, Hu L, Ning H, Zhang Y, Deng K, Liu L, Lu X, Zhang T, Xu J, Li C, Wu H, Deng H, Chen H. CRISPR‐Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia. N Engl J Med. 2019;381:1240‐1247.

    109. Xu L, Yang H, Gao Y, Chen Z, Xie L, Liu Y, Liu Y, Wang X, Li H, Lai W, He Y, Yao A, Ma L, Shao Y, Zhang B, Wang C, Chen H, Deng H. CRISPR/Cas9‐Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV‐1 Resistance In Vivo. Mol Ther. 2017;25:1782‐1789.

    110. Yan WX, Chong S, Zhang H, Makarova KS, Koonin EV, Cheng DR, Scott DA. Cas13d Is a Compact RNA‐Targeting Type VI CRISPR Effector Positively Modulated by a WYL‐Domain‐Containing Accessory Protein. Mol Cell. 2018;70:327‐339.e325.

    111. Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, Chang JC, Bao G, Muench MO, Yu J, Levy JA, Kan YW. Seamless modification of wild‐type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A. 2014;111:9591‐9596.

    112. Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X, Li F, Xiao W, Zhao H, Dai S, Qin X, Mo X, Young WB, Khalili K, Hu W. In Vivo Excision of HIV‐1 Provirus by saCas9 and Multiplex Single‐Guide RNAs in Animal Models. Mol Ther. 2017;25:1168‐1186.

    113. Yin J, Liu M, Liu Y, Wu J, Gan T, Zhang W, Li Y, Zhou Y, Hu J. Optimizing genome editing strategy by primer‐extension‐mediated sequencing. Cell Discov. 2019;5:18.

    114. Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, Mok CKP, Wilson IA. A highly conserved cryptic epitope in the receptor binding domains of SARS‐CoV‐2 and SARS‐CoV. Science. 2020;368:630‐633.

    115. Yurkovetskiy L, Guney MH, Kim K, Goh SL, McCauley S, Dauphin A, Diehl WE, Luban J. Primate immunodeficiency virus proteins Vpx and Vpr counteract transcriptional repression of proviruses by the HUSH complex. Nat Microbiol. 2018;3:1354‐1361.

    116. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA‐guided endonuclease of a class 2 CRISPR‐Cas system. Cell. 2015;163:759‐771.

    117. Zhang T, Zhao Y, Ye J, Cao X, Xu C, Chen B, An H, Jiao Y, Zhang F, Yang X, Zhou G. Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnol J. 2019;17:1185‐1187.

    118. Zhang X, Zhu B, Chen L, Xie L, Yu W, Wang Y, Li L, Yin S, Yang L, Hu H, Han H, Li Y, Wang L, Chen G, Ma X, Geng H, Huang W, Pang X, Yang Z, Wu Y, Siwko S, Kurita R, Nakamura Y, Yang L, Liu M, Li D. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol. 2020;38:856‐860.

    119. Zhang Y, Arango G, Li F, Xiao X, Putatunda R, Yu J, Yang XF, Wang H, Watson LT, Zhang L, Hu W. Comprehensive off‐target analysis of dCas9‐SAM‐mediated HIV reactivation via long noncoding RNA and mRNA profiling. BMC Med Genomics. 2018;11:78.

    120. Zhang Y, Yin C, Zhang T, Li F, Yang W, Kaminski R, Fagan PR, Putatunda R, Young WB, Khalili K, Hu W. CRISPR/gRNA‐directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV‐1 latent reservoirs. Sci Rep. 2015;5:16277.

    121. Zheng YH, Lovsin N, Peterlin BM. Newly identified host factors modulate HIV replication. Immunol Lett. 2005;97:225‐234.

    122. Zhou H, Su J, Hu X, Zhou C, Li H, Chen Z, Xiao Q, Wang B, Wu W, Sun Y, Zhou Y, Tang C, Liu F, Wang L, Feng C, Liu M, Li S, Zhang Y, Xu H, Yao H, Shi L, Yang H. Glia‐to‐Neuron Conversion by CRISPR‐CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell. 2020;181:590‐603.e516.

    123. Zhu W, Lei R, Le Duff Y, Li J, Guo F, Wainberg MA, Liang C. The CRISPR/Cas9 system inactivates latent HIV‐1 proviral DNA. Retrovirology. 2015;12:22.

  • 加载中

Article Metrics

Article views(973) PDF downloads(14) Cited by()

Proportional views
    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Updates on CRISPR-based gene editing in HIV-1/AIDS therapy

      Corresponding author: Wei Hou,
      Corresponding author: Shuliang Chen,
    • Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China

    Abstract: Although tremendous efforts have been made to prevent and treat HIV-1 infection, HIV-1/AIDS remains a major threat to global human health. The combination antiretroviral therapy (cART), although able to suppress HIV-1 replication, cannot eliminate the proviral DNA integrated into the human genome and thus requires lifelong treatment that may lead to various side effects. In recent years, clustered regularly interspaced short palindromic repeat (CRISPR)-associated nuclease 9 (Cas9) related gene-editing systems have been developed and designed as effective ways to treat HIV-1 infection. However, new gene-targeting tools derived from or functioning like CRISPR/Cas9, including base editor, prime editing, SHERLOCK, DETECTR, PAC-MAN, ABACAS, pfAGO, have been developed and optimized for pathogens detection and diseases correction. Here, we summarize recent studies on HIV-1/AIDS gene therapy and provide more gene-editing targets based on studies relating to the molecular mechanism of HIV-1 infection. We also identify the strategies and potential applications of these new gene-editing technologies for HIV-1/AIDS treatment in the future. Moreover, we discuss- the caveats and problems that should be addressed before the clinical use of these versatile CRISPR- based gene targeting tools. Finally, we offer alternative solutions to improve the practice of gene targeting in HIV-1/AIDS gene therapy.

    Reference (123) Relative (20)



    DownLoad:  Full-Size Img  PowerPoint