For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: Enrique Rivadulla,  Jesús L. Romalde. A Comprehensive Review on Human Aichi Virus [J].VIROLOGICA SINICA.  http://dx.doi.org/10.1007/s12250-020-00222-5

A Comprehensive Review on Human Aichi Virus

  • Corresponding author: Jesús L. Romalde, jesus.romalde@usc.es
  • Received Date: 21 September 2019
    Accepted Date: 28 February 2020
    Published Date: 27 April 2020
  • Although norovirus, rotavirus, adenovirus and Astrovirus are considered the most important viral agents transmitted by food and water, in recent years other viruses, such as Aichi virus (AiV), have emerged as responsible for gastroenteritis outbreaks associated with different foods. AiV belongs to the genus Kobuvirus of the family Picornaviridae. It is a virus with icosahedral morphology that presents a single stranded RNA genome with positive sense (8280 nucleotides) and a poly (A) chain. AiV was first detected from clinical samples and in recent years has been involved in acute gastroenteritis outbreaks from different world regions. Furthermore, several studies conducted in Japan, Germany, France, Tunisia and Spain showed a high prevalence of AiV antibodies in adults (between 80% and 99%), which is indicative of a large exposure to this virus. The aim of this review is to bring together all the discovered information about the emerging pathogen human Aichi virus (AiV), discussing the possibles routes of transmission, new detection techniques and future research. Although AiV is responsible for a low percentage of gastroenteritis outbreaks, the high seroprevalence shown by human populations indicates an evident role as an enteric agent. The low percentage of AiV detection could be explained by the fact that the pathogen is more associated to subclinical infections. Further studies will be needed to clarify the real impact of AiV in human health and its importance as a causative gastroenteritis agent worldwide.

  • 加载中
    1. Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Mushegian AR, Nibert M, Sabanadzovic S, Sanfaçon H, Siddell SG, Simmonds P, Varsani A, Zerbini FM, Gorbalenya AE, Davison AJ (2017) Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Arch Virol 162:2505–2538. https://doi.org/10.1007/s00705-017-3358-5

    2. Aiemjoy K, Altan E, Aragie S, Fry DM, Phan TG, Deng X, Chanyalew M, Tadesse Z, Callahan EK, Delwart E, Keenan JD (2019) Viral species richness and composition in young children with loose or watery stool in Ethiopia. BMC Infect Dis 19(242–246):53. https://doi.org/10.1186/s12879-019-3674-3

    3. Alcalá A, Vizzi E, Rodríguez-Díaz J, Zambrano JL, Betancourt W, Liprandi F (2010) Molecular detection and characterization of Aichi viruses in sewage polluted waters of Venezuela. Appl Environ Microbiol 76:4113–4115. https://doi.org/10.1128/AEM.00501-10

    4. Alcalá AC, Pérez K, Blanco R, González R, Ludert JE, Liprandi F, Vizzi E (2018) Molecular detection of human enteric viruses circulating among children with acute gastroenteritis in Valencia, Venezuela, before rotavirus vaccine implementation. Gut Pathog 10:6. https://doi.org/10.1186/s13099-018-0232-2

    5. Amaral MS, Estevam GK, Penatti M, Lafontaine R, Lima IC, Spada PK, Gabbay YB, Matos NB (2015) The prevalence of norovirus, astrovirus and adenovirus infections among hospitalised children with acute gastroenteritis in Porto Velho, State of Rondônia, western Brazilian Amazon. Mem Inst Oswaldo Cruz 110:215–221. https://doi.org/10.1590/0074-02760140381

    6. Ambert-Balay K, Lorrot M, Bon F, Giraudon H, Kaplon J, Wolfer M, Lebon P, Gendrel D, Pothier P (2008) Prevalence and genetic diversity of Aichi virus strains in stool samples from the community and hospitalized patients. J Clin Microbiol 46:1252–1258. https://doi.org/10.1128/JCM.02140-07

    7. Azhdar Z, Ghaderi M, Mousavi-Nasab SD (2019) Optimization of RT-qPCR for detection of Aichi virus in sewage and river water samples in Karaj, Iran. Arch Iran Med 22(5):242–246

    8. Barros BCV, Castro CMO, Pereira D, Ribeiro LG, Júnior JWBD, Casseb SMM, Holanda GM, Cruz ACR, Júnior ECS, Mascarenhas JDP (2019) Proposed new strain of canine kobuvirus from fecal samples of Brazilian domestic dogs. Microbiol Resour Announc 8:e01292–e012918. https://doi.org/10.1128/MRA. 01292-18

    9. Belov GA (2016) Dynamic lipid landscape of picornavirus replication organelles. Curr Opin Virol 19:1–6. https://doi.org/10.1016/j.coviro.2016.05.003

    10. Bergallo M, Galliano I, Montanari P, Rassu M, Daprà V (2017)Aichivirus in children with Diarrhea in Northern Italy. Intervirology 60:196–200. https://doi.org/10.1159/000487051

    11. Betancourt WQ, Kitajima M, Wing AD, Regnery J, Drewes JE, Pepper IL, Gerba CP (2014) Assessment of virus removal by managed aquifer recharge at three full-scale operations. J Environ Sci Health, Part A 49 (14):1685–1692

    12. Bonadonna L, Briancesco R, Suffredini E, Coccia A, Della Libera S, Carducci A, Verani M, Federigi I, Iaconelli M, Bonanno Ferraro G, Mancini P, Veneri C, Ferretti E, Lucentini L, Gramacioni L, La Rosa G (2019) Enteric viruses, somatic coliphages and Vibrio species in marine bathing and non-bathing waters in Italy. Mar Poll Bull 149:110507. https://doi.org/10.1016/j.marpolbul.2019. 110507

    13. Bucciol G, Moens L, Payne K, Wollants E, Mekahli D, Levtchenko E, Vermeulen F, Tousseyn T, Gray P, Ma CS, Tangye SG, Van Ranst M, Brown JR, Breuer J, Meyts I (2018) Chronic Aichi virus infection in a patient with X-linked agammaglobulinemia.J Clin Immunol 38:938–939. https://doi.org/10.1007/s10875-018-0558-z

    14. Buesa J, Rodriguez-Díaz J (2016) The molecular virology of enteric viruses. In: Goyal S, Cannon J (eds) Viruses in foods. Food microbiology and food safety. Springer, Cham, pp 59–130.https://doi.org/10.1007/978-3-319-30723-7_3

    15. Cantalupo PG, Calgua B, Zhao G, Hundesa A, Wier AD, Katz JP, Grabe M, Hendrix RW, Girones R, Wang D, Pipas JM (2011)Raw sewage harbors diverse viral populations. MBiol 2:e00180-11. https://doi.org/10.1128/mBio.00180-11

    16. Carter MJ (2005) Enterically infecting viruses: pathogenicity, transmission and significance for food and waterborne infection.J Appl Microbiol 98:1354–1380. https://doi.org/10.1111/j.1365-2672.2005.02635.x

    17. Chhabra P, Payne DC, Szilagyi PG, Edwards KM, Staat MA, Shirley SH, Wikswo M, Nix WA, Lu X, Parashar UD, Vinjé J (2013)Etiology of viral gastroenteritis in children < 5 years of age in the United States, 2008–2009. J Infect Dis 208:790–800. https://doi.org/10.1093/infdis/jit254

    18. Chuchaona W, Khamrin P, Yodmeeklin A, Kumthip K, Saikruang W, Thongprachum A, Okitsu S, Ushijima H, Maneekarn N (2017)Detection and characterization of Aichi virus 1 in pediatric patients with diarrhea in Thailand. J Med Virol 89:234–238.https://doi.org/10.1002/jmv.24630

    19. Chung JY, Kim SH, Kim YH, Lee MH, Lee KK, Oem JK (2013)Detection and genetic characterization of feline kobuviruses.Virus Genes 47:559–562. https://doi.org/10.1007/s11262-013-0953-8

    20. Coudray-Meunier C, Fraisse A, Martin-Latil S, Delannoy S, Fach P, Perelle S (2016) A novel high-throughput method for molecular detection of human pathogenic viruses using a nanofluidic realtime PCR system. PLoS ONE 11:e0147832. https://doi.org/10.1371/journal.pone.0147832

    21. Cromeans T, Park GW, Costantini V, Lee D, Wang Q, Farkas T, Lee A, Vinjé J (2014) Comprehensive comparison of cultivable norovirus surrogates in response to different inactivation and disinfection treatments. Appl Environ Microbiol 80:5743–5751.https://doi.org/10.1128/AEM.01532-14

    22. da Silva AK, Le Saux JC, Parnaudeau S, Pommepuy M, Elimelech M, Le Guyader FS (2007) Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: different behaviors of genogroups I and II. Appl Environ Microbiol 73:7891–7897. https://doi.org/10.1128/AEM.01428-07

    23. Dang M, Wang X, Wang Q, Wang Y, Lin J, Sun Y, Li X, Zhang L, Lou Z, Wang J, Rao Z (2014) Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Protein Cell 5:692–703. https://doi.org/10.1007/s13238-014-0087-3

    24. Di Martino B, Di Profio F, Ceci C, Di Felice E, Marsilio F (2013)Molecular detection of Aichi virus in raw sewage in Italy. Arch Virol 158:2001–2005. https://doi.org/10.1007/s00705-013-1694-7

    25. Drexler JF, Baumgarte S, de Souza Luna LK, Eschbach-Bludau M, Lukashev AN, Drosten C (2011) Aichi virus shedding in high concentrations in patients with acute diarrhea. Emerg Infect Dis 17:1544–1548. https://doi.org/10.3201/eid1708.101556

    26. Fenner F (1976) The classification and nomenclature of viruses. J Gen Virol 31:463–470. https://doi.org/10.1099/0022-1317-31-3-463

    27. Fusco G, Di Bartolo I, Cioffi B, Ianiro G, Palermo P, Monini M, Amoroso MG (2017) Prevalence of foodborne viruses in mussels in Southern Italy. Food Environ Virol 9:187–194. https://doi.org/ 10.1007/s12560-016-9277-x Goyer M, Aho LS, Bour JB, Ambert-Balay K, Pothier P (2008)Seroprevalence distribution of Aichi virus among a French population in 2006–2007. Arch Virol 153:1171–1174. https://doi.org/10.1007/s00705-008-0091-0

    28. Han TH, Park SH, Hwang ES, Reuter G, Chung JY (2014) Detection of Aichi virus in South Korea. Arch Virol 159:1835–1839.https://doi.org/10.1007/s00705-014-2006-6

    29. Hansman GS, Oka T, Li TC, Nishio O, Noda M, Takeda N (2008)Detection of human enteric viruses in Japanese clams. J Food Prot 71:1689–1695

    30. Haramoto E, Kitajima M (2017) Quantification and genotyping of Aichi virus 1 in water samples in the Kathmandu Valley, Nepal.Food Environ Virol 9:350–353. https://doi.org/10.1007/s12560-017-9283-7

    31. Hata A, Katayama H, Kojima K, Sano S, Kasuga I, Kitajima M, Furumai H (2014) Effects of rainfall events on the occurrence and detection efficiency of viruses in river water impacted by combined sewer overflows. Sci Total Environ 468–469:757–763.https://doi.org/10.1016/j.scitotenv.2013.08.093

    32. Hata A, Hanamoto S, Ihara M, Shirasaka Y, Yamashita N, Tanaka H (2018) Comprehensive study on enteric viruses and indicators in surface water in Kyoto, Japan, during 2014–2015 season. Food Environ Virol 10:353–364. https://doi.org/10.1007/s12560-018-9355-3

    33. Hughes PJ, Stanway G (2000) The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev107 family of proteins involved in the control of cell proliferation.J Gen Virol 81:201–207. https://doi.org/10.1099/0022-1317-81-1-201

    34. Ibrahim C, Hammami S, Mejri S, Mehri I, Pothier P, Hassen A (2017)Detection of Aichi virus genotype B in two lines of wastewater treatment processes. Microb Pathog 109:305–312. https://doi.org/10.1016/j.micpath.2017.06.001

    35. Ishikawa-Sasaki K, Nagashima S, Taniguchi K, Sasaki J (2018)Model of OSBP-mediated cholesterol supply to Aichi virus RNA replication sites involving protein-protein interactions among viral proteins, ACBD3, OSBP, VAP-A/B, and SAC1. J Virol 92:e01952-17. https://doi.org/10.1128/JVI.01952-17

    36. Japhet MO, Famurewa O, Adesina OA, Opaleye OO, Wang B, Höhne M, Bock CT, Mas Marques A, Niendorf S (2018) Viral gastroenteritis among children of 0–5 years in Nigeria: characterizaion of the first Nigerian aichivirus, recombinant noroviruses and detection of a zoonotic astrovirus. J Clin Virol 111:4–11. https://doi.org/10.1016/j.jcv.2018.12.004

    37. Jonsson N, Wahlström K, Svensson L, Serrander L, Lindberg AM (2012) Aichi virus infection in elderly people in Sweden. Arch Virol 157(7):1365–1369. https://doi.org/10.1007/s00705-012-1296-9

    38. Jubb G (1915) A third outbreak of epidemic poliomyelitis at west kirby. The Lancet 185:67. https://doi.org/10.1016/S0140-6736(01)63665-1

    39. Kaikkonen S, Räsänen S, Rämet M, Vesikari T (2010) Aichi virus infection in children with acute gastroenteritis in Finland.Epidemiol Infect 138:1166–1171. https://doi.org/10.1017/S0950268809991300

    40. Kapoor A, Simmonds P, Dubovi EJ, Qaisar N, Henriquez JA, Medina J, Shields S, Lipkin WI (2011) Characterization of a canine homolog of human Aichivirus. J Virol 85:11520–11525. https://doi.org/10.1128/JVI.05317-11

    41. Kharim P, Maneekarn N, Hidaka S, Kishikawa S, Ushijima K, Okitsu S, Ushijima H (2010) Molecular dtection of kobuvirus sequences in stool samples collected from healthy pigs in Japan. Infrect Genet Evol 10:950–954. https://doi.org/10.1016/j.meedid.2010.06.001

    42. King AMQ, Brown F, Christian P, Hovi T, Hyypiä T, Knowles NJ, Lemon SM, Minor PD, Palmenberg AC, Skern T, Stanway G (1999) Picornaviridae. In: Van Regenmortel MHV, Fauquet CM, Bishop DHL, Calisher CH, Carsten EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (eds) Virus taxonomy. Seventh Report of the International Committee for the Taxonomy of Viruses, Academic Press, NewYork, San Diego, pp 657–673

    43. King AMQ, Lefkowitz EJ, Mushegian AR, Adams MJ, Dutilh BE, Gorbalenya AE, Harrach B, Harrison RL, Junglen S, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Nibert ML, Rubino L, Sabanadzovic S, Sanfaçon H, Siddell SG, Simmonds P, Varsani A, Zerbini FM, Davison AJ (2018) Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2018). Arch Virol 163:2601–2631. https://doi.org/10.1007/s00705-018-3847-1

    44. Kitajima M, Gerba CP (2015) Aichi virus 1: environmental occurrence and behavior. Pathogens 4:256–268. https://doi.org/10.3390/pathogens4020256

    45. Kitajima M, Haramoto E, Phanuwan C, Katayama H (2011)Prevalence and genetic diversity of Aichi viruses in wastewater and river water in Japan. Appl Environ Microbiol 77:2184–2187.https://doi.org/10.1128/AEM.02328-10

    46. Kitajima M, Hata A, Yamashita T, Haramoto E, Minagawa H, Katayama H (2013) Development of a reverse transcriptionquantitative PCR system for detection and genotyping of Aichi viruses in clinical and environmental samples. Appl Environ Microbiol 79:3952–3958. https://doi.org/10.1128/AEM.00820-13

    47. Kitajima M, Iker BC, Pepper IL, Gerba CP (2014) Relative abundance and treatment reduction of viruses during wastewater treatment processes—identification of potential viral indicators.Sci Total Environ 488–489:290–296. https://doi.org/10.1016/j.scitotenv.2014.04.087

    48. Kitajima M, Rachmadi AT, Iker BC, Haramoto E, Gerba CP (2018)Temporal variations in genotype distribution of human sapoviruses and Aichi virus 1 in wastewater in Southern Arizona, United States. J Appl Microbiol 124:1324–1332. https://doi.org/10.1111/jam.13712

    49. Klima M, Chalupska D, Różycki B, Humpolickova J, Rezabkova L, Silhan J, Baumlova A, Dubankova A, Boura E (2017) Kobuviral non-structural 3A proteins act as molecular harnesses to hijack the host ACBD3 protein. Structure 25:219–230. https://doi.org/10.1016/j.str.2016.11.021

    50. Le Guyader FS, Le Saux JC, Ambert-Balay K, Krol J, Serais O, Parnaudeau S, Giraudon H, Delmas G, Pommepuy M, Pothier P, Atmar RL (2008) Aichi virus, norovirus, astrovirus, enterovirus, and rotavirus involved in clinical cases from a French oysterrelated gastroenteritis outbreak. J Clin Microbiol 46:4011–4017.https://doi.org/10.1128/JCM.01044-08

    51. Lee RM, Lessler J, Lee RA, Rudolph KE, Reich NG, Perl TM, Cummings DA (2013) Incubation periods of viral gastroenteritis:a systematic review. BMC Infect Dis 13:446. https://doi.org/10.1186/1471-2334-13-446

    52. Lee JY, Kim JH, Rho JY (2019) Development of rapid and specific detection for the human Aichivirus A using the loop-mediated isothermal amplification from water samples. Indian J Microbiol 59:375–378. https://doi.org/10.1007/s12088-019-00803-3

    53. Li LL, Liu N, Yu JM, Ao YY, Li S, Stine OC, Duan ZJ (2017)Analysis of Aichi virus and Saffold virus association with pediatric acute gastroenteritis. J Clin Virol 87:37–42. https://doi.org/10.1016/j.jcv.2016.12.003

    54. Lodder WJ, Rutjes SA, Takumi K, de Roda Husman AM (2013)Aichi virus in sewage and surface water, The Netherlands.Emerg Infect Dis 19:1222–1230. https://doi.org/10.3201/eid1908.130312

    55. Lu L, Van Dung N, Ivens A, Bogaardt C, O’Toole A, Bryant JE, Carrique-Mas J, Van Cuong N, Anh PH, Rabaa MA, Tue NT, Thwaites GE, Baker S, Simmonds P, Woolhouse ME, VIZIONS Consortium (2018) Genetic diversity and cross-species transmission of kobuviruses in Vietnam. Virus Evol 4:vey002. https://doi.org/10.1093/ve/vey002

    56. Lukashev AN, Drexler JF, Belalov IS, Eschbach-Bludau M, Baumgarte S, Drosten C (2012) Genetic variation and recombination in Aichi virus. J Gen Virol 93:1226–1235. https://doi.org/10.1099/vir.0.040311-0

    57. McPhail JA, Ottosen EH, Jenkins ML, Burke JE (2017) The Molecular basis of Aichi virus 3A protein activation of phosphatidylinositol 4 Kinase IIIb, PI4KB, through ACBD3.Structure 25:121–131. https://doi.org/10.1016/j.str.2016.11.016

    58. Melnick JL (1996) My role in the discovery and classification of the enteroviruses. Annu Rev Microbiol 50:1–24. https://doi.org/10.1146/annurev.micro.50.1.1

    59. Melnick JL, Chanock RM, Gelfand H, Hammon WM, Huebner RJ, Rosen L, Sabin AB, Wenner HA (1963) Picornaviruses:classification of nine new types. Science 141:153–154

    60. Ng TF, Marine R, Wang C, Simmonds P, Kapusinszky B, Bodhidatta L, Oderinde BS, Wommack KE, Delwart E (2012) High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. J Virol 86:12161–12175. https://doi.org/10.1128/JVI.00869-12

    61. Nielsen AC, Gyhrs ML, Nielsen LP, Pedersen C, Böttiger B (2013)Gastroenteritis and the novel picornaviruses Aichi virus, Cosavirus, Saffold virus, and Salivirus in young children.J Clin Virol 57:239–242. https://doi.org/10.1016/j.jcv.2013.03.015

    62. Oberste MS, Maher K, Kilpatrick DR, Pallansch MA (1999)Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73:1941–1948

    63. Oh DY, Silva PA, Hauroeder B, Diedrich S, Cardoso DD, Schreier E (2006) Molecular characterization of the first Aichi viruses isolated in Europe and in South America. Arch Virol 151:1199–1206. https://doi.org/10.1007/s00705-005-0706-7

    64. Onosi O, Upfold NS, Jukes MD, Luke GA, Knox C (2019) The first molecular detection of Aichi virus 1 in raw sewage and mussels collected in South Africa. Food Environ Virol 1:96–100. https://doi.org/10.1007/s12560-018-9362-4

    65. Oshiki M, Miura T, Kazama S, Segawa T, Ishii S, Hatamoto M, Yamaguchi T, Kubota K, Iguchi A, Tagawa T, Okubo T, Uemura S, Harada H, Kobayashi N, Araki N, Sano D (2018)Microfluidic PCR amplification and MiSeq amplicon sequencing techniques for high-throughput detection and genotyping of human pathogenic rna viruses in human feces, sewage, and oysters. Front Microbiol 9:830. https://doi.org/10.3389/fmicb.2018.00830

    66. Otomaru K, Naoi Y, Haga K, Omatsu T, Uto T, Koizumi M, Masuda T, Yamasato H, Takai H, Aoki H, Tsuchiaka S, Sano K, Okazaki S, Katayama Y, Oba M, Furuya T, Shirai J, Katayama K, Mizutani T, Nagai M (2016) Detection of novel kobu-like viruses in Japanese black cattle in Japan. J Vet Med Sci 78:321–324. https://doi.org/10.1292/jvms.15-0447

    67. Oude Munnink BB, Canuti M, Deijs M, de Vries M, Jebbink MF, Rebers S, Molenkamp R, van Hemert FJ, Chung K, Cotten M, Snijders F, Sol CJ, van der Hoek L (2014) Unexplained diarrhoea in HIV-1 infected individuals. BMC Infect Dis 14:22. https://doi.org/10.1186/1471-2334-14-22

    68. Pankovics P, Boros Á, Kiss T, Reuter G (2014) Identification and complete ge-nome analysis of kobuvirus in faecal samples of European roller (Coracias garru-lus): for the first time in bird.Arch Virol 160:345–351. https://doi.org/10.1007/s00705-014-2228-7

    69. Patel M, Glass RI (2009) Gastrointestinal syndromes. In: Richman DD, Whitley RJ, Hayden F (eds) Clinical virology. ASM Press, Washington, pp 45–57

    70. Pham NT, Khamrin P, Nguyen TA, Kanti DS, Phan TG, Okitsu S, Ushijima H (2007) Isolation and molecular characterization of Aichi viruses from faecal specimens collected in Japan, Bangladesh, Thailand, and Vietnam. J Clin Microbiol 45:2287–2288. https://doi.org/10.1128/JCM.00525-07

    71. Phan TG, Kapusinszky B, Wang C, Rose RK, Lipton HL, Delwart EL (2011) The fecal viral flora of wild rodents. PLoS Pathog 7:e1002218.https://doi.org/10.1371/journal.ppat.1002218

    72. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011. https://doi.org/10.1021/ac202578x

    73. Polo D, Vilariño ML, Manso CF, Romalde JL (2010) Imported mollusks and dissemination of human enteric viruses. Emerg Infect Dis 16:1036–1038. https://doi.org/10.3201/eid1606.091748

    74. Polo D, Varela MF, Romalde JL (2015) Detection and quantification of hepatitis A virus and norovirus in Spanish authorized shellfish harvesting areas. Int J Food Microbiol 193:43–50. https://doi.org/10.1016/j.ijfoodmicro.2014.10.007

    75. Portes SA, de Mello Volotao E, Rose TL, Rocha MS, Xavier MTP, de Assis RM, Fialho AM, Rocha MS, Miagostovich MP, Gagliardi Leite JP, Carvalho-Costa FA (2015) Aichi virus positivity in HIV-1 seropositive children hospitalized with diarrheal disease.Curr HIV Res 13:325–331

    76. Prevost B, Lucas FS, Goncalves A, Richard F, Moulin L, Wurtzer S (2015) Large scale survey of enteric viruses in river and waste water underlines the health status of the local population.Environ Int 79:42–50. https://doi.org/10.1016/j.envint.2015.03.004

    77. Rački N, Morisset D, Gutiérrez-Aguirre I, Ravnikar M (2014) Onestep RT- droplet digital PCR: a breakthrough in the quantification of waterborne RNA viruses. Anal Bioanal Chem 406:661–667. https://doi.org/10.1007/s00216-013-7476-y Reuter G, Boldizsár A, Papp G, Pankovics P (2009) Detection of Aichi virus shedding in a child with enteric and extraintestinal symptoms in Hungary. Arch Virol 154:1529–1532. https://doi.org/10.1007/s00705-009-0473-y

    78. Reuter G, Boros A, Pankovics P (2011) Kobuviruses—a comprehensive review. Rev Med Virol 21:32–41. https://doi.org/10.1002/rmv.677

    79. Ribes JM, Montava R, Téllez-Castillo CJ, Fernández-Jiménez M, Buesa J (2010) Seroprevalence of Aichi virus in a Spanish population from 2007 to 2008. Clin Vacc Immunol 17:545–549.https://doi.org/10.1128/CVI.00382-09

    80. Rivadulla E, Varela MF, Romalde JL (2017) Low prevalence of Aichi virus in mollus-can shellfish samples from Galicia (NW Spain).J Appl Microbiol 122:516–521. https://doi.org/10.1111/jam.13363

    81. Rivadulla E, Varela MF, Romalde JL (2019) Epidemiology of Aichi virus in fecal samples from outpatients with acute gastroenteritis in Northwestern Spain. J Clin Virol 118:14–19

    82. Romalde JL, Estes MK, Szücs G, Atmar RL, Woodely CM, Metcalf TG (1994) In situ detection of hepatitis A virus in cell cultures and shellfish tissues. Appl Environ Microbio 60:1921–1926

    83. Rosario K, Nilsson C, Lim YW, Ruan Y, Breitbart M (2009)Metagenomic analysis of viruses in reclaimed water. Environ Microbiol 11:2806–2820. https://doi.org/10.1111/j.1462-2920. 2009.01964.x Sabin C, Füzik T, Škubník K, Pálková L, Lindberg AM, Plevka P (2016) Structure of Aichi virus 1 and its empty particle: clues towards kobuvirus genome release mechanism. J Virol 90:10800–10810. https://doi.org/10.1128/JVI.01601-16

    84. Saikruang W, Khamrin P, Suantai B, Ushijima H, Maneekarn N (2014) Molecular detection and characterization of Aichivirus A in adult patients with diarrhea in Thailand. J Med Virol 86:983–987. https://doi.org/10.1002/jmv.23904

    85. Sdiri-Loulizi K, Hassine M, Gharbi-Khelifi H, Sakly N, Chouchane S, Guediche MN, Pothier P, Aouni M, Ambert-Balay K (2009)Detection and genomic char-acterization of Aichi viruses in stool samples from children in Monastir, Tunisia. J Clin Microbiol 47:2275–2278. https://doi.org/10.1128/JCM.00913-09

    86. Sdiri-Loulizi K, Hassine M, Aouni Z, Gharbi-Khelifi H, Sakly N, Chouchane S, Guédiche MN, Pothier P, Aouni M, Ambert-Balay K (2010) First molecular detection of Aichi virus in sewage and shellfish samples in the Monastir region of Tunisia. Arch Virol 155:1509–1513. https://doi.org/10.1007/s00705-010-0744-7

    87. Sewlikar S, D’Souza DH (2017) Survival of hepatitis A virus and Aichi virus in cranberry-based juices at refrigeration (4 ℃).Food Microbiol 62:251–255. https://doi.org/10.1016/j.fm.2016.10.003

    88. Sharma SK, Amy G (2010) Chapter 15: Natural treatment systems. In:Edzwald JK (ed) Water quality and treatment: a handbook on drinking water, 6th edn. American Water Works Association, McGraw Hill Inc, New York Terio V, Bottaro M, Di Pinto A, Fusco G, Barresi T, Tantillo G, Martella V (2018) Occurrence of Aichi virus in retail shellfish in Italy. Food Microbiol 74:120–124. https://doi.org/10.1016/j.fm.2018.02.013

    89. Thongprachum A, Fujimoto T, Takanashi S, Saito H, Okitsu S, Shimizu H, Khamrin P, Maneekarn N, Hayakawa S, Ushijima H (2018) Detection of nineteen enteric viruses in raw sewage in Japan. Infect Genet Evol 63:17–23. https://doi.org/10.1016/j.meegid.2018.05.006

    90. Tuthill TJ, Groppelli E, Hogle JM, Rowlands DJ (2010) Picornaviruses. Curr Top Microbiol Immunol 343:43–89. https://doi.org/10.1007/82_2010_37

    91. van der Schaar HM, Dorobantu CM, Albulescu L, Strating JR, van Kuppeveld FJ (2016) Fat(al) attraction: picornaviruses usurp lipid transfer at membrane contact sites to create replication organelles. Trends Microbiol 24:535–546. https://doi.org/10. 1016/j.tim.2016.02.017

    92. Vossen P (2001) Scientific advice in support to risk management with regard to BSE. Verh K Acad Geneeskd Belg 63:379–403

    93. Wang X, Peng W, Ren J, Hu Z, Xu J, Lou Z, Li X, Yin W, Shen X, Porta C, Walter TS, Evans G, Axford D, Owen R, Rowlands DJ, Wang J, Stuart DI, Fry EE, Rao Z (2012) A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71.Nat Struct Mol Biol 19:424–429. https://doi.org/10.1038/nsmb.2255

    94. Weiss J (2005) A review of clinical experience and recommendations for improving patient care. Cutis 75:32–38

    95. Yamashita T, Sakae K (2003) Molecular biology and epidemiology of Aichi virus and other diarrhoeogenic enteroviruses. Perspectives in medical virology, vol 9. Elsevier, New York, pp 645–657.https://doi.org/10.1016/S0168-7069(03)09040-2

    96. Yamashita T, Kobayashi S, Sakae K, Nakata S, Chiba S, Ishihara Y, Isomura S (1991) Isolation of cytopathic small roundviruses with BS-C-1 cells from patients with gastroenteritis. J Infect Dis 164:954–957

    97. Yamashita T, Sakae K, Ishihara Y, Isomura S, Utagawa E (1993)Prevalence of newly isolated, cytopathic small round virus(Aichi strain) in Japan. J Clin Microbiol 31:2938–2943

    98. Yamashita T, Sakae K, Tsuzuki H, Suzuki Y, Ishikawa N, Takeda N, Miyamura T, Yamazaki S (1998) Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans.J Virol 72:8408–8412

    99. Yamashita T, Sugiyama M, Tsuzuki H, Sakae K, Suzuki Y, Miyazaki Y (2000) Application of a reverse transcription-PCR for identification and differentiation of Aichi virus, a new member of the Picornavirus family associated with gastroenteritis in humans. J Clin Microbiol 38:2955–2961

    100. Yamashita T, Ito M, Tsuzuki H, Sakae K (2001) Identification of Aichi virus infection by measurement of immunoglobulin responses in an enzyme-linked immunosorbent assay. J Clin Microbiol 39:4178–4180. https://doi.org/10.1128/JCM.39.11.4178-4180.2001

    101. Yamashita T, Adachi H, Hirose E, Nakamura N, Ito M, Yasui Y, Kobayashi S, Minagawa H (2014) Molecular detection and nucleotide sequence analysis of a new Aichi virus closely related to canine kobuvirus in sewage samples. J Med Microbiol 63:715–720. https://doi.org/10.1099/jmm.0.070987-0

    102. Yang S, Zhang W, Shen Q, Yang Z, Zhu J, Cui L, Hua X (2009) Aichi virus strains in children with gastroenteritis, China. Emerg Infect Dis 15:1703–1705. https://doi.org/10.3201/eid1510.090522

    103. Zell R (2017) Picornaviridae-the ever-growing vírus family. Arch Virol 163:299–317. https://doi.org/10.1007/s00705-017-3614-8

    104. Zhu L, Wang X, Ren J, Kotecha A, Walter TS, Yuan S, Yamashita T, Tuthill TJ, Fry EE, Rao Z, Stuart DI (2016) Structure of human Aichi virus and implications for receptor binding. Nat Microbiol 1:16150. https://doi.org/10.1038/nmicrobiol.2016.150

  • 加载中

Article Metrics

Article views(695) PDF downloads(5) Cited by()

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    A Comprehensive Review on Human Aichi Virus

      Corresponding author: Jesús L. Romalde, jesus.romalde@usc.es
    • Departamento de Microbiología y Parasitología, CIBUSFacultad de Biología, Universidade de Santiago de Compostela, 15782 Santiago, Spain

    Abstract: Although norovirus, rotavirus, adenovirus and Astrovirus are considered the most important viral agents transmitted by food and water, in recent years other viruses, such as Aichi virus (AiV), have emerged as responsible for gastroenteritis outbreaks associated with different foods. AiV belongs to the genus Kobuvirus of the family Picornaviridae. It is a virus with icosahedral morphology that presents a single stranded RNA genome with positive sense (8280 nucleotides) and a poly (A) chain. AiV was first detected from clinical samples and in recent years has been involved in acute gastroenteritis outbreaks from different world regions. Furthermore, several studies conducted in Japan, Germany, France, Tunisia and Spain showed a high prevalence of AiV antibodies in adults (between 80% and 99%), which is indicative of a large exposure to this virus. The aim of this review is to bring together all the discovered information about the emerging pathogen human Aichi virus (AiV), discussing the possibles routes of transmission, new detection techniques and future research. Although AiV is responsible for a low percentage of gastroenteritis outbreaks, the high seroprevalence shown by human populations indicates an evident role as an enteric agent. The low percentage of AiV detection could be explained by the fact that the pathogen is more associated to subclinical infections. Further studies will be needed to clarify the real impact of AiV in human health and its importance as a causative gastroenteritis agent worldwide.

    Reference (104) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return