For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: Shumin Zhang, Xuhua Zhang, Yuanyuan Bie, Jing Kong, An Wang, Yang Qiu, Xi Zhou. STUB1 regulates antiviral RNAi through inducing ubiquitination and degradation of Dicer and AGO2 in mammals [J].VIROLOGICA SINICA, 2022, 37(4) : 569-580.  http://dx.doi.org/10.1016/j.virs.2022.05.001

STUB1 regulates antiviral RNAi through inducing ubiquitination and degradation of Dicer and AGO2 in mammals

  • Corresponding author: Yang Qiu, yangqiu@wh.iov.cn
    Xi Zhou, zhouxi@wh.iov.cn
  • Received Date: 01 March 2022
    Accepted Date: 13 April 2022
    Available online: 06 May 2022
  • RNA interference (RNAi) is an intrinsic antiviral immune mechanism conserved in diverse eukaryotic organisms. However, the mechanism by which antiviral RNAi in mammals is regulated is poorly understood. In this study, we uncovered that the E3 ubiquitin ligase STIP1 homology and U-box-containing protein 1 (STUB1) was a new regulator of the RNAi machinery in mammals. We found that STUB1 interacted with and ubiquitinated AGO2, and targeted it for degradation in a chaperon-dependent manner. STUB1 promoted the formation of Lys48 (K48)-linked polyubiquitin chains on AGO2, and facilitated AGO2 degradation through ubiquitin-proteasome system. In addition to AGO2, STUB1 also induced the protein degradation of AGO1, AGO3 and AGO4. Further investigation revealed that STUB1 also regulated Dicer's ubiquitination via K48-linked polyubiquitin and induced the degradation of Dicer as well as its specialized form, termed antiviral Dicer (aviDicer) that expresses in mammalian stem cells. Moreover, we found that STUB1 deficiency up-regulated Dicer and AGO2, thereby enhancing the RNAi response and efficiently inhibiting viral replication in mammalian cells. Using the newborn mouse model of Enterovirus A71 (EV-A71), we confirmed that STUB1 deficiency enhanced the virus-derived siRNAs production and antiviral RNAi, which elicited a potent antiviral effect against EV-A71 infection in vivo. In summary, our findings uncovered that the E3 ubiquitin ligase STUB1 was a general regulator of the RNAi machinery by targeting Dicer, aviDicer and AGO1–4. Moreover, STUB1 regulated the RNAi response through mediating the abundance of Dicer and AGO2 during viral infection, thereby providing novel insights into the regulation of antiviral RNAi in mammals.

  • 加载中
    1. Adiliaghdam, F., Basavappa, M., Saunders, T.L., Harjanto, D., Prior, J.T., Cronkite, D.A., Papavasiliou, N., Jeffrey, K.L., 2020. A requirement for Argonaute 4 in mammalian antiviral defense. Cell Rep. 30, 1690–1701 e1694.

    2. Backes, S., Langlois, R.A., Schmid, S., Varble, A., Shim, J.V., Sachs, D., tenOever, B.R., 2014. The Mammalian response to virus infection is independent of small RNA silencing. Cell Rep. 8, 114–125.

    3. Bronevetsky, Y., Villarino, A.V., Eisley, C.J., Barbeau, R., Barczak, A.J., Heinz, G.A., Kremmer, E., Heissmeyer, V., McManus, M.T., Erle, D.J., Rao, A., Ansel, K.M., 2013.T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. J. Exp. Med. 210, 417–432.

    4. Chang, H.M., Martinez, N.J., Thornton, J.E., Hagan, J.P., Nguyen, K.D., Gregory, R.I., 2012. Trim71 cooperates with microRNAs to repress Cdkn1a expression and promote embryonic stem cell proliferation. Nat. Commun. 3, 923.

    5. Chen, J., Lai, F., Niswander, L., 2012. The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling. Genes Dev. 26, 803–815.

    6. Demeter, T., Vaskovicova, M., Malik, R., Horvat, F., Pasulka, J., Svobodova, E., Flemr, M., Svoboda, P., 2019. Main constraints for RNAi induced by expressed long dsRNA in mouse cells. Life Sci Alliance 2, e201800289.

    7. Fang, Y., Liu, Z., Qiu, Y., Kong, J., Fu, Y., Liu, Y., Wang, C., Quan, J., Wang, Q., Xu, W., Yin, L., Cui, J., Xu, Y., Curry, S., Jiang, S., Lu, L., Zhou, X., 2021. Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo. Immunity 54, 2231–2244 e2236.

    8. Flemr, M., Malik, R., Franke, V., Nejepinska, J., Sedlacek, R., Vlahovicek, K., Svoboda, P., 2013. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155, 807–816.

    9. Gebert, L.F.R., MacRae, I.J., 2019. Regulation of microRNA function in animals. Nat. Rev.Mol. Cell Biol. 20, 21–37.

    10. Guo, Z., Li, Y., Ding, S.W., 2019. Small RNA-based antimicrobial immunity. Nat. Rev.Immunol. 19, 31–44.

    11. Han, J., LaVigne, C.A., Jones, B.T., Zhang, H., Gillett, F., Mendell, J.T., 2020a. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science 370, eabc9546.

    12. Han, Q., Chen, G., Wang, J., Jee, D., Li, W.X., Lai, E.C., Ding, S.W., 2020b. Mechanism and function of antiviral RNA interference in mice. mBio 11, e03278-19.

    13. Kennedy, E.M., Whisnant, A.W., Kornepati, A.V., Marshall, J.B., Bogerd, H.P., Cullen, B.R., 2015. Production of functional small interfering RNAs by an aminoterminal deletion mutant of human Dicer. Proc. Natl. Acad. Sci. U. S. A. 112, E6945–E6954.

    14. Lai, H.H., Lin, L.J., Hung, L.Y., Chen, P.S., 2018. Role of Dicer in regulating oxaliplatin resistance of colon cancer cells. Biochem. Biophys. Res. Commun. 506, 87–93.

    15. Li, Y., Basavappa, M., Lu, J., Dong, S., Cronkite, D.A., Prior, J.T., Reinecker, H.C., Hertzog, P., Han, Y., Li, W.X., Cheloufi, S., Karginov, F.V., Ding, S.W., Jeffrey, K.L., 2016. Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat Microbiol 2, 16250.

    16. Li, Y., Lu, J., Han, Y., Fan, X., Ding, S.W., 2013. RNA interference functions as an antiviral immunity mechanism in mammals. Science 342, 231–234.

    17. Liu, Q., Chen, X., Novak, M.K., Zhang, S., Hu, W., 2021. Repressing Ago2 mRNA translation by Trim71 maintains pluripotency through inhibiting let-7 microRNAs.Elife 10, e66288.

    18. Maillard, P.V., Ciaudo, C., Marchais, A., Li, Y., Jay, F., Ding, S.W., Voinnet, O., 2013.Antiviral RNA interference in mammalian cells. Science 342, 235–238.

    19. Maillard, P.V., Van der Veen, A.G., Deddouche-Grass, S., Rogers, N.C., Merits, A., Reis E Sousa, C., 2016. Inactivation of the type I interferon pathway reveals long doublestranded RNA-mediated RNA interference in mammalian cells. EMBO J. 35, 2505–2518.

    20. Poirier, E.Z., Buck, M.D., Chakravarty, P., Carvalho, J., Frederico, B., Cardoso, A., Healy, L., Ulferts, R., Beale, R., Reis, E.S.C., 2021. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science 373, 231–236.

    21. Qian, Q., Zhou, H., Shu, T., Mu, J., Fang, Y., Xu, J., Li, T., Kong, J., Qiu, Y., Zhou, X., 2020.The capsid protein of semliki forest virus antagonizes RNA interference in mammalian cells. J. Virol. 94, e01233-19.

    22. Qiu, Y., Xu, Y., Zhang, Y., Zhou, H., Deng, Y.Q., Li, X.F., Miao, M., Zhang, Q., Zhong, B., Hu, Y., Zhang, F.C., Wu, L., Qin, C.F., Zhou, X., 2017. Human virus-derived small RNAs can confer antiviral immunity in mammals. Immunity 46, 992–1004 e1005.

    23. Qiu, Y., Xu, Y.P., Wang, M., Miao, M., Zhou, H., Xu, J., Kong, J., Zheng, D., Li, R.T., Zhang, R.R., Guo, Y., Li, X.F., Cui, J., Qin, C.F., Zhou, X., 2020. Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes. Sci. Adv. 6, eaax7989.

    24. Rybak, A., Fuchs, H., Hadian, K., Smirnova, L., Wulczyn, E.A., Michel, G., Nitsch, R., Krappmann, D., Wulczyn, F.G., 2009. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat. Cell Biol. 11, 1411–1420.

    25. Sanchez-David, R.Y., Maillard, P.V., 2021. Unlocking the therapeutic potential of antiviral RNAi. Immunity 54, 2180–2182.

    26. Shahrudin, S., Ding, S.W., 2021. Boosting stem cell immunity to viruses. Science 373, 160–161.

    27. Shi, C.Y., Kingston, E.R., Kleaveland, B., Lin, D.H., Stubna, M.W., Bartel, D.P., 2020. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science 370, eabc9359.

    28. Smibert, P., Yang, J.S., Azzam, G., Liu, J.L., Lai, E.C., 2013. Homeostatic control of Argonaute stability by microRNA availability. Nat. Struct. Mol. Biol. 20, 789–795.

    29. Sun, P., Zhang, S., Qin, X., Chang, X., Cui, X., Li, H., Zhang, S., Gao, H., Wang, P., Zhang, Z., Luo, J., Li, Z., 2018. Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1.Autophagy 14, 336–346.

    30. Ullah, K., Chen, S., Lu, J., Wang, X., Liu, Q., Zhang, Y., Long, Y., Hu, Z., Xu, G., 2020. The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. J. Biol. Chem. 295, 4696–4708.

    31. van der Veen, A.G., Maillard, P.V., Schmidt, J.M., Lee, S.A., Deddouche-Grass, S., Borg, A., Kjaer, S., Snijders, A.P., Reis e Sousa, C., 2018. The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J. 37, e97479.

    32. Xu, J., Kong, J., Lyu, B., Wang, X., Qian, Q., Zhou, X., Qiu, Y., 2021. The capsid protein of rubella virus antagonizes RNA interference in mammalian cells. Viruses 13, 154.

    33. Xu, Y.P., Qiu, Y., Zhang, B., Chen, G., Chen, Q., Wang, M., Mo, F., Xu, J., Wu, J., Zhang, R.R., Cheng, M.L., Zhang, N.N., Lyu, B., Zhu, W.L., Wu, M.H., Ye, Q., Zhang, D., Man, J.H., Li, X.F., Cui, J., Xu, Z., Hu, B., Zhou, X., Qin, C.F., 2019. Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Res. 29, 265–273.

    34. Yonezawa, T., Takahashi, H., Shikata, S., Liu, X., Tamura, M., Asada, S., Fukushima, T., Fukuyama, T., Tanaka, Y., Sawasaki, T., Kitamura, T., Goyama, S., 2017. The ubiquitin ligase STUB1 regulates stability and activity of RUNX1 and RUNX1-RUNX1T1. J. Biol. Chem. 292, 12528–12541.

    35. Zeng, J., Dong, S., Luo, Z., Xie, X., Fu, B., Li, P., Liu, C., Yang, X., Chen, Y., Wang, X., Liu, Z., Wu, J., Yan, Y., Wang, F., Chen, J.F., Zhang, J., Long, G., Goldman, S.A., Li, S., Zhao, Z., Liang, Q., 2020. The Zika virus capsid disrupts corticogenesis by suppressing dicer activity and miRNA biogenesis. Cell Stem Cell 27, 618–632 e619.

    36. Zhang, S., Hu, Z.W., Mao, C.Y., Shi, C.H., Xu, Y.M., 2020a. CHIP as a therapeutic target for neurological diseases. Cell Death Dis. 11, 727.

    37. Zhang, Y., Li, Z., Ye, Z., Xu, Y., Wang, B., Wang, C., Dai, Y., Lu, J., Lu, B., Zhang, W., Li, Y., 2020b. The activation of antiviral RNA interference not only exists in neural progenitor cells but also in somatic cells in mammals. Emerg. Microb. Infect. 9, 1580–1589.

    38. Zhang, Y., Xu, Y., Dai, Y., Li, Z., Wang, J., Ye, Z., Ren, Y., Wang, H., Li, W.X., Lu, J., Ding, S.W., Li, Y., 2021. Efficient Dicer processing of virus-derived double-stranded RNAs and its modulation by RIG-I-like receptor LGP2. PLoS Pathog. 17, e1009790.

  • 加载中

Article Metrics

Article views(300) PDF downloads(6) Cited by()

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    STUB1 regulates antiviral RNAi through inducing ubiquitination and degradation of Dicer and AGO2 in mammals

      Corresponding author: Yang Qiu, yangqiu@wh.iov.cn
      Corresponding author: Xi Zhou, zhouxi@wh.iov.cn
    • a State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;

    Abstract: RNA interference (RNAi) is an intrinsic antiviral immune mechanism conserved in diverse eukaryotic organisms. However, the mechanism by which antiviral RNAi in mammals is regulated is poorly understood. In this study, we uncovered that the E3 ubiquitin ligase STIP1 homology and U-box-containing protein 1 (STUB1) was a new regulator of the RNAi machinery in mammals. We found that STUB1 interacted with and ubiquitinated AGO2, and targeted it for degradation in a chaperon-dependent manner. STUB1 promoted the formation of Lys48 (K48)-linked polyubiquitin chains on AGO2, and facilitated AGO2 degradation through ubiquitin-proteasome system. In addition to AGO2, STUB1 also induced the protein degradation of AGO1, AGO3 and AGO4. Further investigation revealed that STUB1 also regulated Dicer's ubiquitination via K48-linked polyubiquitin and induced the degradation of Dicer as well as its specialized form, termed antiviral Dicer (aviDicer) that expresses in mammalian stem cells. Moreover, we found that STUB1 deficiency up-regulated Dicer and AGO2, thereby enhancing the RNAi response and efficiently inhibiting viral replication in mammalian cells. Using the newborn mouse model of Enterovirus A71 (EV-A71), we confirmed that STUB1 deficiency enhanced the virus-derived siRNAs production and antiviral RNAi, which elicited a potent antiviral effect against EV-A71 infection in vivo. In summary, our findings uncovered that the E3 ubiquitin ligase STUB1 was a general regulator of the RNAi machinery by targeting Dicer, aviDicer and AGO1–4. Moreover, STUB1 regulated the RNAi response through mediating the abundance of Dicer and AGO2 during viral infection, thereby providing novel insights into the regulation of antiviral RNAi in mammals.

    Reference (38) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return