For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: Lingqian Tian, Qiuhong Liu, Rongjuan Pei, Yingshan Chen, Chonghui Xu, Jielin Tang, Hao Sun, Kunpeng Liu, Qi Yang, Lei Yang, Leshan Li, Yongli Zhang, Yuan Zhou, Chao Shan, Xue Hu, Xinwen Chen, Yun Wang. Comparison of viral propagation and drug response among SARS-CoV-2 VOCs using replicons capable of recapitulating virion assembly and release [J].VIROLOGICA SINICA, 2022, 37(5) : 695-703.  http://dx.doi.org/10.1016/j.virs.2022.06.008

Comparison of viral propagation and drug response among SARS-CoV-2 VOCs using replicons capable of recapitulating virion assembly and release

  • Several variants of concern (VOCs) have emerged since the WIV04 strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first isolated in January 2020. Due to mutations in the spike (S) protein, these VOCs have evolved to enhance viral infectivity and immune evasion. However, whether mutations of the other viral proteins lead to altered viral propagation and drug resistance remains obscure. The replicon is a noninfectious viral surrogate capable of recapitulating certain steps of the viral life cycle. Although several SARS-CoV-2 replicons have been developed, none of them were derived from emerging VOCs and could only recapitulate viral genome replication and subgenomic RNA (sgRNA) transcription. In this study, SARS-CoV-2 replicons derived from the WIV04 strain and two VOCs (the Beta and Delta variants) were prepared by removing the S gene from their genomes, while other structural genes remained untouched. These replicons not only recapitulate viral genome replication and sgRNA transcription but also support the assembly and release of viral-like particles, as manifested by electron microscopic assays. Thus, the S-deletion replicon could recapitulate virtually all the post-entry steps of the viral life cycle and provides a versatile tool for measuring viral intracellular propagation and screening novel antiviral drugs, including inhibitors of virion assembly and release. Through the quantification of replicon RNA released into the supernatant, we demonstrate that viral intracellular propagation and drug response to remdesivir have not yet substantially changed during the evolution of SARS-CoV-2 from the WIV04 strain to the Beta and Delta VOCs.

  • 加载中
  • 10.1016j.virs.2022.06.008-ESM.docx
    1. Alexander, M.R., Rootes, C.L., van Vuren, P.J., Stewart, C.R., 2020. Concentration of infectious SARS-CoV-2 by polyethylene glycol precipitation. J. Virol. Methods 286, 113977.

    2. Almazan, F., Sola, I., Zuniga, S., Marquez-Jurado, S., Morales, L., Becares, M., Enjuanes, L., 2014. Coronavirus reverse genetic systems:Infectious clones and replicons. Virus Res. 189, 262-270.

    3. Amarilla, A.A., Sng, J.D.J., Parry, R., Deerain, J.M., Potter, J.R., Setoh, Y.X., Rawle, D.J., Le, T.T., Modhiran, N., Wang, X., Peng, N.Y.G., Torres, F.J., Pyke, A., Harrison, J.J., Freney, M.E., Liang, B., McMillan, C.L.D., Cheung, S.T.M., Guevara, D., Hardy, J.M., Bettington, M., Muller, D.A., Coulibaly, F., Moore, F., Hall, R.A., Young, P.R., Mackenzie, J.M., Hobson-Peters, J., Suhrbier, A., Watterson, D., Khromykh, A.A., 2021. A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses. Nat. Commun. 12, 3431.

    4. Bhowmik, D., Nandi, R., Jagadeesan, R., Kumar, N., Prakash, A., Kumar, D., 2020.Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect. Genet. Evol. 84, 104451.

    5. Boson, B., Legros, V., Zhou, B., Siret, E., Mathieu, C., Cosset, F.L., Lavillette, D., Denolly, S., 2021. The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J. Biol. Chem. 296, 100111.

    6. Cele, S., Gazy, I., Jackson, L., Hwa, S.H., Tegally, H., Lustig, G., Giandhari, J., Pillay, S., Wilkinson, E., Naidoo, Y., Karim, F., Ganga, Y., Khan, K., Bernstein, M., Balazs, A.B., Gosnell, B.I., Hanekom, W., Moosa, M.S.,, Network for Genomic Surveillance in South A, Team, C.-K., Lessells, R.J., de Oliveira, T., Sigal, A., 2021. Escape of SARSCoV-2 501Y.V2 from neutralization by convalescent plasma. Nature 593, 142-146.

    7. Chen, M., Yan, C., Qin, F., Zheng, L., Zhang, X.E., 2021. The intraviral protein-protein interaction of SARS-CoV-2 reveals the key role of N protein in virus-like particle assembly. Int. J. Biol. Sci. 17, 3889-3897.

    8. Cui, J., Li, F., Shi, Z.L., 2019. Origin and evolution of pathogenic coronaviruses. Nat. Rev.Microbiol. 17, 181-192.

    9. Das, G., Das, T., Chowdhury, N., Chatterjee, D., Bagchi, A., Ghosh, Z., 2021. Repurposed drugs and nutraceuticals targeting envelope protein:A possible therapeutic strategy against COVID-19. Genomics 113, 1129-1140.

    10. Dey, D., Borkotoky, S., Banerjee, M., 2020. In silico identification of Tretinoin as a SARSCoV-2 envelope (E) protein ion channel inhibitor. Comput. Biol. Med. 127, 104063.

    11. Edmonds, J., van Grinsven, E., Prow, N., Bosco-Lauth, A., Brault, A.C., Bowen, R.A., Hall, R.A., Khromykh, A.A., 2013. A novel bacterium-free method for generation of flavivirus infectious DNA by circular polymerase extension reaction allows accurate recapitulation of viral heterogeneity. J. Virol. 87, 2367-2372.

    12. Eymieux, S., Rouille, Y., Terrier, O., Seron, K., Blanchard, E., Rosa-Calatrava, M., Dubuisson, J., Belouzard, S., Roingeard, P., 2021a. Ultrastructural modifications induced by SARS-CoV-2 in Vero cells:A kinetic analysis of viral factory formation, viral particle morphogenesis and virion release. Cell. Mol. Life Sci. 78, 3565-3576.

    13. Eymieux, S., Uzbekov, R., Rouille, Y., Blanchard, E., Hourioux, C., Dubuisson, J., Belouzard, S., Roingeard, P., 2021b. Secretory vesicles are the principal means of SARS-CoV-2 egress. Cells 10, 2047.

    14. Fehr, A.R., Perlman, S., 2015. Coronaviruses:An overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1-23.

    15. Furutani, Y., Toguchi, M., Higuchi, S., Yanaka, K., Gailhouste, L., Qin, X.Y., Masaki, T., Ochi, S., Matsuura, T., 2021. Establishment of a rapid detection system for ISG20-dependent SARS-CoV-2 subreplicon RNA degradation induced by interferon-alpha.Int. J. Mol. Sci. 22, 11641.

    16. Gordon, C.J., Tchesnokov, E.P., Woolner, E., Perry, J.K., Feng, J.Y., Porter, D.P., Gotte, M., 2020. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency.J. Biol. Chem. 295, 6785-6797.

    17. He, X., Quan, S., Xu, M., Rodriguez, S., Goh, S.L., Wei, J., Fridman, A., Koeplinger, K.A., Carroll, S.S., Grobler, J.A., Espeseth, A.S., Olsen, D.B., Hazuda, D.J., Wang, D., 2021.Generation of SARS-CoV-2 reporter replicon for high-throughput antiviral screening and testing. Proc. Natl. Acad. Sci. U. S. A. 118, e2025866118.

    18. Hou, Z., Zhou, Z., Wang, Z., Xiao, G., 2016. Assembly of long DNA sequences using a new synthetic Escherichia coli-yeast shuttle vector. Virol. Sin. 31, 160-167.

    19. Jin, Y.Y., Lin, H., Cao, L., Wu, W.C., Ji, Y., Du, L., Jiang, Y., Xie, Y., Tong, K., Xing, F., Zheng, F., Shi, M., Pan, J.A., Peng, X., Guo, D., 2021. A convenient and biosafe replicon with accessory genes of SARS-CoV-2 and its potential application in antiviral drug discovery. Virol. Sin. 36, 913-923.

    20. Kotaki, T., Xie, X., Shi, P.Y., Kameoka, M., 2021. A PCR amplicon-based SARS-CoV-2 replicon for antiviral evaluation. Sci. Rep. 11, 2229.

    21. Li, F., 2016. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 3, 237-261.

    22. Li, Q., Nie, J., Wu, J., Zhang, L., Ding, R., Wang, H., Zhang, Y., Li, T., Liu, S., Zhang, M., Zhao, C., Liu, H., Nie, L., Qin, H., Wang, M., Lu, Q., Li, X., Liu, J., Liang, H., Shi, Y., Shen, Y., Xie, L., Zhang, L., Qu, X., Xu, W., Huang, W., Wang, Y., 2021. SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell 184, 2362-2371 e2369.

    23. Liu, S., Chou, C.K., Wu, W.W., Luan, B., Wang, T.T., 2022. Stable cell clones harboring self-replicating SARS-CoV-2 RNAs for drug screen. J. Virol. 96, e0221621.

    24. Malicoat, J., Manivasagam, S., Zuniga, S., Sola, I., McCabe, D., Rong, L., Perlman, S., Enjuanes, L., Manicassamy, B., 2022. Development of a single-cycle infectious SARSCoV-2 virus replicon particle system for use in biosafety level 2 laboratories. J. Virol. 96, e0183721.

    25. Meng, J., Mei, S., Chen, L., Wu, C., Fang, S., Peng, B., Kong, D., Zhang, X., Xiong, L., Huang, Y., Chen, Q., Zhang, R., He, Y., 2021. In:China CDC Weekly, 3, pp. 218-220.

    26. Nguyen, H.T., Falzarano, D., Gerdts, V., Liu, Q., 2021. Construction of a noninfectious SARS-CoV-2 replicon for antiviral-drug testing and gene function studies. J. Virol. 95, e0068721.

    27. Owen, D.R., Allerton, C.M.N., Anderson, A.S., Aschenbrenner, L., Avery, M., Berritt, S., Boras, B., Cardin, R.D., Carlo, A., Coffman, K.J., Dantonio, A., Di, L., Eng, H., Ferre, R., Gajiwala, K.S., Gibson, S.A., Greasley, S.E., Hurst, B.L., Kadar, E.P., Kalgutkar, A.S., Lee, J.C., Lee, J., Liu, W., Mason, S.W., Noell, S., Novak, J.J., Obach, R.S., Ogilvie, K., Patel, N.C., Pettersson, M., Rai, D.K., Reese, M.R., Sammons, M.F., Sathish, J.G., Singh, R.S.P., Steppan, C.M., Stewart, A.E., Tuttle, J.B., Updyke, L., Verhoest, P.R., Wei, L., Yang, Q., Zhu, Y., 2021. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science 374, 1586-1593.

    28. Ricardo-Lax, I., Luna, J.M., Thao, T.T.N., Le Pen, J., Yu, Y., Hoffmann, H.H., Schneider, W.M., Razooky, B.S., Fernandez-Martinez, J., Schmidt, F., Weisblum, Y., Trueb, B.S., Berenguer Veiga, I., Schmied, K., Ebert, N., Michailidis, E., Peace, A., Sanchez-Rivera, F.J., Lowe, S.W., Rout, M.P., Hatziioannou, T., Bieniasz, P.D., Poirier, J.T., MacDonald, M.R., Thiel, V., Rice, C.M., 2021. Replication and singlecycle delivery of SARS-CoV-2 replicons. Science 374, 1099-1106.

    29. Saito, A., Irie, T., Suzuki, R., Maemura, T., Nasser, H., Uriu, K., Kosugi, Y., Shirakawa, K., Sadamasu, K., Kimura, I., Ito, J., Wu, J., Iwatsuki-Horimoto, K., Ito, M., Yamayoshi, S., Loeber, S., Tsuda, M., Wang, L., Ozono, S., Butlertanaka, E.P., Tanaka, Y.L., Shimizu, R., Shimizu, K., Yoshimatsu, K., Kawabata, R., Sakaguchi, T., Tokunaga, K., Yoshida, I., Asakura, H., Nagashima, M., Kazuma, Y., Nomura, R., Horisawa, Y., Yoshimura, K., Takaori-Kondo, A., Imai, M.,, Genotype to Phenotype Japan C, Tanaka, S., Nakagawa, S., Ikeda, T., Fukuhara, T., Kawaoka, Y., Sato, K., 2021. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 602, 300-306.

    30. Siu, Y.L., Teoh, K.T., Lo, J., Chan, C.M., Kien, F., Escriou, N., Tsao, S.W., Nicholls, J.M., Altmeyer, R., Peiris, J.S., Bruzzone, R., Nal, B., 2008. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol. 82, 11318-11330.

    31. Tanaka, T., Saito, A., Suzuki, T., Miyamoto, Y., Takayama, K., Okamoto, T., Moriishi, K., 2022. Establishment of a stable SARS-CoV-2 replicon system for application in highthroughput screening. Antivir. Res. 199, 105268.

    32. Teyssou, E., Delagreverie, H., Visseaux, B., Lambert-Niclot, S., Brichler, S., Ferre, V., Marot, S., Jary, A., Todesco, E., Schnuriger, A., Ghidaoui, E., Abdi, B., Akhavan, S., Houhou-Fidouh, N., Charpentier, C., Morand-Joubert, L., Boutolleau, D., Descamps, D., Calvez, V., Marcelin, A.G., Soulie, C., 2021. The Delta SARS-CoV-2 variant has a higher viral load than the Beta and the historical variants in nasopharyngeal samples from newly diagnosed COVID-19 patients. J. Infect. 83, e1-e3.

    33. Thi Nhu Thao, T., Labroussaa, F., Ebert, N., V'Kovski, P., Stalder, H., Portmann, J., Kelly, J., Steiner, S., Holwerda, M., Kratzel, A., Gultom, M., Schmied, K., Laloli, L., Husser, L., Wider, M., Pfaender, S., Hirt, D., Cippa, V., Crespo-Pomar, S., Schroder, S., Muth, D., Niemeyer, D., Corman, V.M., Muller, M.A., Drosten, C., Dijkman, R., Jores, J., Thiel, V., 2020. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 582, 561-565.

    34. Torii, S., Ono, C., Suzuki, R., Morioka, Y., Anzai, I., Fauzyah, Y., Maeda, Y., Kamitani, W., Fukuhara, T., Matsuura, Y., 2021. Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction. Cell Rep. 35, 109014.

    35. Wang, B., Zhang, C., Lei, X., Ren, L., Zhao, Z., Wang, J., Huang, H., 2021a. Construction of non-infectious SARS-CoV-2 replicons and their application in drug evaluation. Virol.Sin. 36, 890-900.

    36. Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., Xiao, G., 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269-271.

    37. Wang, P., Nair, M.S., Liu, L., Iketani, S., Luo, Y., Guo, Y., Wang, M., Yu, J., Zhang, B., Kwong, P.D., Graham, B.S., Mascola, J.R., Chang, J.Y., Yin, M.T., Sobieszczyk, M., Kyratsous, C.A., Shapiro, L., Sheng, Z., Huang, Y., Ho, D.D., 2021b. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593, 130-135.

    38. Wibmer, C.K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Oosthuysen, B., Lambson, B.E., de Oliveira, T., Vermeulen, M., van der Berg, K., Rossouw, T., Boswell, M., Ueckermann, V., Meiring, S., von Gottberg, A., Cohen, C., Morris, L., Bhiman, J.N., Moore, P.L., 2021. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27, 622-625.

    39. Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., 2010. Coronavirus genomics and bioinformatics analysis. Viruses 2, 1804-1820.

    40. Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., Hu, Y., Tao, Z.W., Tian, J.H., Pei, Y.Y., Yuan, M.L., Zhang, Y.L., Dai, F.H., Liu, Y., Wang, Q.M., Zheng, J.J., Xu, L., Holmes, E.C., Zhang, Y.Z., 2020. A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269.

    41. Xia, H., Cao, Z., Xie, X., Zhang, X., Chen, J.Y., Wang, H., Menachery, V.D., Rajsbaum, R., Shi, P.Y., 2020. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 33, 108234.

    42. Xie, X., Lokugamage, K.G., Zhang, X., Vu, M.N., Muruato, A.E., Menachery, V.D., Shi, P.Y., 2021. Engineering SARS-CoV-2 using a reverse genetic system. Nat. Protoc. 16, 1761-1784.

    43. Xie, X., Muruato, A., Lokugamage, K.G., Narayanan, K., Zhang, X., Zou, J., Liu, J., Schindewolf, C., Bopp, N.E., Aguilar, P.V., Plante, K.S., Weaver, S.C., Makino, S., LeDuc, J.W., Menachery, V.D., Shi, P.Y., 2020. An infectious cDNA clone of SARSCoV-2. Cell Host Microbe 27, 841-848 e843.

    44. Xu, R., Shi, M., Li, J., Song, P., Li, N., 2020. Construction of SARS-CoV-2 virus-like particles by mammalian expression system. Front. Bioeng. Biotechnol. 8, 862.

    45. Zhang, H., Fischer, D.K., Shuda, M., Moore, P.S., Gao, S.J., Ambrose, Z., Guo, H., 2022.Construction and characterization of two SARS-CoV-2 minigenome replicon systems.J. Med. Virol. 94, 2438-2452.

    46. Zhang, Q.Y., Deng, C.L., Liu, J., Li, J.Q., Zhang, H.Q., Li, N., Zhang, Y.N., Li, X.D., Zhang, B., Xu, Y., Ye, H.Q., 2021a. SARS-CoV-2 replicon for high-throughput antiviral screening. J. Gen. Virol. 102, 1583.

    47. Zhang, Y., Song, W., Chen, S., Yuan, Z., Yi, Z., 2021b. A bacterial artificial chromosome(BAC)-vectored noninfectious replicon of SARS-CoV-2. Antivir. Res. 185, 104974.

    48. Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F., Shi, Z.L., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.

  • 加载中

Article Metrics

Article views(396) PDF downloads(5) Cited by()

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Comparison of viral propagation and drug response among SARS-CoV-2 VOCs using replicons capable of recapitulating virion assembly and release

      Corresponding author: Xue Hu, huxue@wh.iov.cn
      Corresponding author: Xinwen Chen, chen_xinwen@gzlab.ac.cn
      Corresponding author: Yun Wang, wangyun@wh.iov.cn
    • a State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China;

    Abstract: Several variants of concern (VOCs) have emerged since the WIV04 strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first isolated in January 2020. Due to mutations in the spike (S) protein, these VOCs have evolved to enhance viral infectivity and immune evasion. However, whether mutations of the other viral proteins lead to altered viral propagation and drug resistance remains obscure. The replicon is a noninfectious viral surrogate capable of recapitulating certain steps of the viral life cycle. Although several SARS-CoV-2 replicons have been developed, none of them were derived from emerging VOCs and could only recapitulate viral genome replication and subgenomic RNA (sgRNA) transcription. In this study, SARS-CoV-2 replicons derived from the WIV04 strain and two VOCs (the Beta and Delta variants) were prepared by removing the S gene from their genomes, while other structural genes remained untouched. These replicons not only recapitulate viral genome replication and sgRNA transcription but also support the assembly and release of viral-like particles, as manifested by electron microscopic assays. Thus, the S-deletion replicon could recapitulate virtually all the post-entry steps of the viral life cycle and provides a versatile tool for measuring viral intracellular propagation and screening novel antiviral drugs, including inhibitors of virion assembly and release. Through the quantification of replicon RNA released into the supernatant, we demonstrate that viral intracellular propagation and drug response to remdesivir have not yet substantially changed during the evolution of SARS-CoV-2 from the WIV04 strain to the Beta and Delta VOCs.

    Reference (48) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return