For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: Xinghai Zhang, Shaohong Chen, Zengguo Cao, Yanfeng Yao, Junping Yu, Junhui Zhou, Ge Gao, Ping He, Zhuo Dong, Jie Zhong, Jing Luo, Hongping Wei, Huajun Zhang. Increased pathogenicity and aerosol transmission for one SARS-CoV-2 B.1.617.2 Delta variant over the wild-type strain in hamsters [J].VIROLOGICA SINICA, 2022, 37(6) : 796-803.  http://dx.doi.org/10.1016/j.virs.2022.09.008

Increased pathogenicity and aerosol transmission for one SARS-CoV-2 B.1.617.2 Delta variant over the wild-type strain in hamsters

  • During the two-year pandemic of coronavirus disease 2019 (COVID-19), its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been evolving. SARS-CoV-2 Delta, a variant of concern, has become the dominant circulating strain worldwide within just a few months. Here, we performed a comprehensive analysis of a new B.1.617.2 Delta strain (Delta630) compared with the early WIV04 strain (WIV04) in vitro and in vivo, in terms of replication, infectivity, pathogenicity, and transmission in hamsters. When inoculated intranasally, Delta630 led to more pronounced weight loss and more severe disease in hamsters. Moreover, 40% mortality occurred about one week after infection with 104 PFU of Delta630, whereas no deaths occurred even after infection with 105 PFU of WIV04 or other strains belonging to the Delta variant. Moreover, Delta630 outgrew over WIV04 in the competitive aerosol transmission experiment. Taken together, the Delta630 strain showed increased replication ability, pathogenicity, and transmissibility over WIV04 in hamsters. To our knowledge, this is the first SARS-CoV-2 strain that causes death in a hamster model, which could be an asset for the efficacy evaluation of vaccines and antivirals against infections of SARS-CoV-2 Delta strains. The underlying molecular mechanisms of increased virulence and transmission await further analysis.

  • 加载中
  • 10.1016j.virs.2022.09.008-ESM.docx
    1. Abdelnabi, R., Boudewijns, R., Foo, C.S., Seldeslachts, L., Sanchez-Felipe, L., Zhang, X., Delang, L., Maes, P., Kaptein, S.J.F., Weynand, B., Vande Velde, G., Neyts, J., Dallmeier, K., 2021. Comparing infectivity and virulence of emerging SARS-COV-2 variants in Syrian hamsters. EBioMedicine 68, 103403.

    2. Allen, H., Vusirikala, A., Flannagan, J., Twohig, K.A., Zaidi, A., Chudasama, D., Lamagni, T., Groves, N., Turner, C., Rawlinson, C., Lopez-Bernal, J., Harris, R., Charlett, A., Dabrera, G., Kall, M., 2022. Household transmission of COVID-19 cases associated with SARS-COV-2 delta variant (B.1.617.2): National case-control study. Lancet Reg Health Eur 12, 100252.

    3. Chakraborty, C., Bhattacharya, M., Sharma, A.R., 2021. Present variants of concern and variants of interest of severe acute respiratory syndrome coronavirus 2: their significant mutations in S-glycoprotein, infectivity, re-infectivity, immune escape and vaccines activity. Rev. Med. Virol. 32, e2270.

    4. Chan, J.F.W., Zhang, A.J., Yuan, S., Poon, V.K.M., Chan, C.C.S., Lee, A.C.Y., Chan, W.M., Fan, Z., Tsoi, H.W., Wen, L., Liang, R., Cao, J., Chen, Y., Tang, K., Luo, C., Cai, J.-P., Kok, K.H., Chu, H., Chan, K.H., Sridhar, S., Chen, Z., Chen, H., To, K.K.W., Yuen, K.Y., 2020. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (covid-19) in a Golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 71, 2428-2446.

    5. Chen, Y., Wang, J., Liu, C., Su, L., Zhang, D., Fan, J., Yang, Y., Xiao, M., Xie, J., Xu, Y., Li, Y., Zhang, S., 2020. IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19. Mol. Med. 26, 97.

    6. Cucinotta, D., Vanelli, M., 2020. WHO declares COVID-19 a pandemic. Acta Biomed.:Atenei Parmensis. https://pubmed.ncbi.nlm.nih.gov/32191675. (Accessed 9 October 2022).

    7. Dagpunar, J., 2021. Interim estimates of increased transmissibility, growth rate, and reproduction number of the COVID-19 B.1.617.2 variant of concern in the United Kingdom. medRxiv. https://doi.org/10.1101/2021.06.03.21258293.

    8. Daniloski, Z., Jordan, T.X., Ilmain, J.K., Guo, X., Bhabha, G., tenOever, B.R., Sanjana, N.E., 2021. The spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. Elife 10, e65365.

    9. Earnest, R., Uddin, R., Matluk, N., Renzette, N., Turbett, S.E., Siddle, K.J., Loreth, C., Adams, G., Tomkins-Tinch, C.H., Petrone, M.E., Rothman, J.E., Breban, M.I., Koch, R.T., Billig, K., Fauver, J.R., Vogels, C.B.F., Bilguvar, K., De Kumar, B., Landry, M.L., Peaper, D.R., Kelly, K., Omerza, G., Grieser, H., Meak, S., Martha, J., Dewey, H.B., Kales, S., Berenzy, D., Carpenter-Azevedo, K., King, E., Huard, R.C., Novitsky, V., Howison, M., Darpolor, J., Manne, A., Kantor, R., Smole, S.C., Brown, C.M., Fink, T., Lang, A.S., Gallagher, G.R., Pitzer, V.E., Sabeti, P.C., Gabriel, S., MacInnis, B.L., , New England Variant Investigation Team, Tewhey, R., Adams, M.D., Park, D.J., Lemieux, J.E., Grubaugh, N.D., 2022. . Comparative transmissibility of SARS-CoV-2 variants Delta and alpha in New England, USA. Cell Rep Med 3, 100583.

    10. Feng, L., Wang, Q., Shan, C., Yang, C., Feng, Y., Wu, J., Liu, X., Zhou, Y., Jiang, R., Hu, P., Liu, X., Zhang, F., Li, P., Niu, X., Liu, Y., Zheng, X., Luo, J., Sun, J., Gu, Y., Liu, B., Xu, Y., Li, C., Pan, W., Zhao, J., Ke, C., Chen, X., Xu, T., Zhong, N., Guan, S., Yuan, Z., Chen, L., 2020. An adenovirus-vectored COVID-19 vaccine confers protection from SARS-CoV-2 challenge in rhesus macaques. Nat. Commun. 11, 1-11.

    11. Fisman, D.N., Tuite, A.R., 2021. Progressive increase in virulence of novel SARS-CoV-2 variants in Ontario, Canada, February to June, 2021. medRxiv. https://doi.org/ 10.1101/2021.07.05.21260050.

    12. Han, H., Ma, Q., Li, C., Liu, R., Zhao, L., Wang, W., Zhang, P., Liu, X., Gao, G., Liu, F., Jiang, Y., Cheng, X., Zhu, C., Xia, Y., 2020. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microb. Infect. 9, 1123-1130.

    13. Huang, K., Zhang, Y., Hui, X., Zhao, Y., Gong, W., Wang, T., Zhang, S., Yang, Y., Deng, F., Zhang, Q., Chen, X., Yang, Y., Sun, X., Chen, H., Tao, Y.J., Zou, Z., Jin, M., 2021. Q493K and Q498H substitutions in spike promote adaptation of SARS-CoV-2 in mice. EBioMedicine 67, 103381.

    14. Imai, M., Iwatsuki-Horimoto, K., Hatta, M., Loeber, S., Halfmann, P.J., Nakajima, N., Watanabe, T., Ujie, M., Takahashi, K., Ito, M., Yamada, S., Fan, S., Chiba, S., Kuroda, M., Guan, L., Takada, K., Armbrust, T., Balogh, A., Furusawa, Y., Okuda, M., Ueki, H., Yasuhara, A., Sakai-Tagawa, Y., Lopes, T.J., Kiso, M., Yamayoshi, S., Kinoshita, N., Ohmagari, N., Hattori, S.I., Takeda, M., Mitsuya, H., Krammer, F., Suzuki, T., Kawaoka, Y., 2020. Syrian hamsters as a small animal model for SARSCoV-2 infection and countermeasure development. Proc. Natl. Acad. Sci. USA 117, 16587-16595.

    15. Konings, F., Perkins, M.D., Kuhn, J.H., Pallen, M.J., Alm, E.J., Archer, B.N., Barakat, A., Bedford, T., Bhiman, J.N., Caly, L., Carter, L.L., Cullinane, A., de Oliveira, T., Druce, J., El Masry, I., Evans, R., Gao, G.F., Gorbalenya, A.E., Hamblion, E., Herring, B.L., Hodcroft, E., Holmes, E.C., Kakkar, M., Khare, S., Koopmans, M.P., Korber, B., Leite, J., MacCannell, D., Marklewitz, M., Maurer-Stroh, S., Rico, J.A., Munster, V.J., Neher, R., Munnink, B.O., Pavlin, B.I., Peiris, M., Poon, L., Pybus, O., Rambaut, A., Resende, P., Subissi, L., Thiel, V., Tong, S., van der Werf, S., von Gottberg, A., Ziebuhr, J., Van Kerkhove, M.D., 2021. SARS-CoV-2 variants of interest and concern naming scheme conducive for global discourse. Nat. Microbiol. 6, 821-823.

    16. Lee, C.Y., Lowen, A.C., 2021. Animal models for SARS-COV-2. Curr. Opin. Virol. 48, 73-81.

    17. Li, B., Deng, A., Li, K., Hu, Y., Li, Z., Shi, Y., Xiong, Q., Liu, Z., Guo, Q., Zou, L., Zhang, H., Zhang, M., Ouyang, F., Su, J., Su, W., Xu, J., Lin, H., Sun, J., Peng, J., Jiang, H., Zhou, P., Hu, T., Luo, M., Zhang, Y., Zheng, H., Xiao, J., Liu, T., Tan, M., Che, R., Zeng, H., Zheng, Z., Huang, Y., Yu, J., Yi, L., Wu, J., Chen, J., Zhong, H., Deng, X., Kang, M., Pybus, O.G., Hall, M., Lythgoe, K.A., Li, Y., Yuan, J., He, J., Lu, J., 2022. Viral infection and transmission in a large, well-traced outbreak caused by the SARSCoV-2 Delta variant. Nat. Commun. 13, 460.

    18. Liu, Y., Rocklöv, J., 2021. The reproductive number of the Delta variant of SARS-COV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J. Trav. Med. 28 taab124.

    19. Mlcochova, P., Kemp, S.A., Dhar, M.S., Papa, G., Meng, B., Ferreira, I.A.T.M., Datir, R., Collier, D.A., Albecka, A., Singh, S., Pandey, R., Brown, J., Zhou, J., Goonawardane, N., Mishra, S., Whittaker, C., Mellan, T., Marwal, R., Datta, M., Sengupta, S., Ponnusamy, K., Radhakrishnan, V.S., Abdullahi, A., Charles, O., Chattopadhyay, P., Devi, P., Caputo, D., Peacock, T., Wattal, C., Goel, N., Satwik, A., Vaishya, R., Agarwal, M., Indian SARS-CoV-2 Genomics Consortium (INSACOG);Genotype to Phenotype Japan (G2P-Japan) Consortium; CITIID-NIHR BioResource COVID-19 Collaboration, Mavousian, A., Lee, J.H., Bassi, J., Silacci-Fegni, C., Saliba, C., Pinto, D., Irie, T., Yoshida, I., Hamilton, W.L., Sato, K., Bhatt, S., Flaxman, S., James, L.C., Corti, D., Piccoli, L., Barclay, W.S., Rakshit, P., Agrawal, A., Gupta, R.K., 2021. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114-119.

    20. Mohandas, S., Yadav, P.D., Shete, A., Nyayanit, D., Sapkal, G., Lole, K., Gupta, N., 2021. SARS-CoV-2 delta variant pathogenesis and host response in Syrian hamsters. Viruses 13, 1773.

    21. Port, J.R., Yinda, C.K., Avanzato, V.A., Schulz, J.E., Holbrook, M.G., van Doremalen, N., Shaia, C., Fischer, R.J., Munster, V.J., 2022. Increased small particle aerosol transmission of B.1.1.7 compared with SARS-CoV-2 lineage a in vivo. Nat. Microbiol. 7, 213-223.

    22. Port, J.R., Yinda, C.K., Owusu, I.O., Holbrook, M., Fischer, R., Bushmaker, T., Avanzato, V.A., Schulz, J.E., Martens, C., van Doremalen, N., Clancy, C.S., Munster, V.J., 2021. SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters. Nat.Commun. 12, 1-15.

    23. Rosenke, K., Meade-White, K., Letko, M., Clancy, C., Hansen, F., Liu, Y., Okumura, A., Tang-Huau, T.L., Li, R., Saturday, G., Feldmann, F., Scott, D., Wang, Z., Munster, V., Jarvis, M.A., Feldmann, H., 2020. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg. Microb. Infect. 9, 2673-2684.

    24. Sia, S.F., Yan, L.M., Chin, A.W., Fung, K., Choy, K.T., Wong, A.Y., Kaewpreedee, P., Perera, R.A., Poon, L.L., Nicholls, J.M., Peiris, M., Yen, H.-L., 2020. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834-838.

    25. Sun, S.H., Chen, Q., Gu, H.J., Yang, G., Wang, Y.X., Huang, X.Y., Liu, S.S., Zhang, N.N., Li, X.F., Xiong, R., Guo, Y., Deng, Y.Q., Huang, W.J., Liu, Q., Liu, Q.M., Shen, Y.L., Zhou, Y., Yang, X., Zhao, T.Y., Fan, C.F., Zhou, Y.S., Qin, C.F., Wang, Y.C., 2020.A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 28, 124-133 e124.

    26. Sun, S., Gu, H., Cao, L., Chen, Q., Ye, Q., Yang, G., Li, R.T., Fan, H., Deng, Y.-Q., Song, X., Qi, Y., Li, M., Lan, J., Feng, R., Guo, Y., Zhu, N., Qin, S., Wang, L., Zhang, Y.F., Zhou, C., Zhao, L., Chen, Y., Shen, M., Cui, Y., Yang, X., Wang, X., Tan, W., Wang, H., Wang, X., Qin, C.F., 2021. Characterization and structural basis of a lethal mouseadapted SARS-CoV-2. Nat. Commun. 12, 1-16.

    27. Teyssou, E., Delagréverie, H., Visseaux, B., Lambert-Niclot, S., Brichler, S., Ferre, V., Marot, S., Jary, A., Todesco, E., Schnuriger, A., Ghidaoui, E., Abdi, B., Akhavan, S., Houhou-Fidouh, N., Charpentier, C., Morand-Joubert, L., Boutolleau, D., Descamps, D., Calvez, V., Marcelin, A.G., Soulie, C., 2021. The delta SARS-CoV-2 variant has a higher viral load than the beta and the historical variants in nasopharyngeal samples from newly diagnosed COVID-19 patients. J. Infect. 83, e1-e3.

    28. Twohig, K.A., Nyberg, T., Zaidi, A., Thelwall, S., Sinnathamby, M.A., Aliabadi, S., Seaman, S.R., Harris, R.J., Hope, R., Lopez-Bernal, J., 2021. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B. 1.617. 2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect. Dis. 22, 35-42.

    29. World Health Organization (WHO), 2022a. Weekly Epidemiological Update on COVID-19- 7 September 2022. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19—7-september-2022. (Accessed 7 September 2022).

    30. World Health Organization (WHO), 2022b. Tracking SARS-CoV-2 Variants. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. (Accessed 11 August 2022).

    31. Zhang, J., Xiao, T., Cai, Y., Lavine, C.L., Peng, H., Zhu, H., Anand, K., Tong, P., Gautam, A., Mayer, M.L., Walsh, R.M., Rits-Volloch, S., Wesemann, D.R., Yang, W., Seaman, M.S., Lu, J., Chen, B., 2021. Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 delta variant. Science 374, 1353-1360.

    32. Zhang, L., Jackson, C.B., Mou, H., Ojha, A., Peng, H., Quinlan, B.D., Rangarajan, E.S., Pan, A., Vanderheiden, A., Suthar, M.S., Li, W., Izard, T., Rader, C., Farzan, M., Choe, H., 2020. SARS-COV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 11, 6013.

    33. Zhang, Q., Zhang, H., Gao, J., Huang, K., Yang, Y., Hui, X., He, X., Li, C., Gong, W., Zhang, Y., Zhao, Y., Peng, C., Gao, X., Chen, H., Zou, Z., Shi, Z.-L., Jin, M., 2020. A serological survey of SARS-CoV-2 in cat in Wuhan. Emerg. Microb. Infect. 9, 2013-2019.

    34. Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.Q., Chen, Y., Shen, X.-R., Wang, X., Zheng, X.-S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F., Shi, Z.L., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.

  • 加载中

Article Metrics

Article views(281) PDF downloads(13) Cited by()

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Increased pathogenicity and aerosol transmission for one SARS-CoV-2 B.1.617.2 Delta variant over the wild-type strain in hamsters

      Corresponding author: Xinghai Zhang, zhangxh@wh.iov.cn
      Corresponding author: Hongping Wei, hpwei@wh.iov.cn
      Corresponding author: Huajun Zhang, hjzhang@wh.iov.cn
    • a State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China;
    • b University of Chinese Academy of Sciences, Beijing, 101409, China;
    • c Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan, 430040, China

    Abstract: During the two-year pandemic of coronavirus disease 2019 (COVID-19), its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been evolving. SARS-CoV-2 Delta, a variant of concern, has become the dominant circulating strain worldwide within just a few months. Here, we performed a comprehensive analysis of a new B.1.617.2 Delta strain (Delta630) compared with the early WIV04 strain (WIV04) in vitro and in vivo, in terms of replication, infectivity, pathogenicity, and transmission in hamsters. When inoculated intranasally, Delta630 led to more pronounced weight loss and more severe disease in hamsters. Moreover, 40% mortality occurred about one week after infection with 104 PFU of Delta630, whereas no deaths occurred even after infection with 105 PFU of WIV04 or other strains belonging to the Delta variant. Moreover, Delta630 outgrew over WIV04 in the competitive aerosol transmission experiment. Taken together, the Delta630 strain showed increased replication ability, pathogenicity, and transmissibility over WIV04 in hamsters. To our knowledge, this is the first SARS-CoV-2 strain that causes death in a hamster model, which could be an asset for the efficacy evaluation of vaccines and antivirals against infections of SARS-CoV-2 Delta strains. The underlying molecular mechanisms of increased virulence and transmission await further analysis.

    Reference (34) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return