For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: An-Kai Zhu, Sa-Sa Li, Shu-Pei Yu, Zhao-Yong Zhang, Huan Li, Jing-Feng Li, Shan-Shan Gao, Heng Chen, Jincun Zhao, Run Shi, Mingjian Lu, Chaoyang Li. A pair of SARS-CoV-2 nucleocapsid protein monoclonal antibodies shows high specificity and sensitivity for diagnosis [J].VIROLOGICA SINICA, 2022, 37(6) : 942-945.  http://dx.doi.org/10.1016/j.virs.2022.10.003

A pair of SARS-CoV-2 nucleocapsid protein monoclonal antibodies shows high specificity and sensitivity for diagnosis

  • Highlights
    1. Seven monoclonal antibodies (mAbs) against SARS-CoV-2 nucleocapsid protein are produced, which can be applied in ELISA, Western blotting, and immunofluorescence staining.
    2. A pair of mAbs, 2G11/bio-1C7, can detect SARS-CoV-2 nucleocapsid protein as low as 15 pg/well in the double sandwich ELISA.
    3. The mAb, 2G11, shows 97.4% sensitivity and 100% specificity for diagnosing the human blood samples.

  • 加载中
  • 10.1016j.virs.2022.10.003-ESM.docx
    1. Almazán, F., Galán, C., Enjuanes, L., 2004. The nucleoprotein is required for efficient coronavirus genome replication. J. Virol. 78, 12683–12688.

    2. Bai, C., Zhong, Q., Gao, G.F., 2021. Overview of SARS-CoV-2 genome-encoded proteins. Sci. China Life Sci. 65, 1–15.

    3. Bar-On, Y.M., Flamholz, A., Phillips, R., Milo, R., 2020. Sars-cov-2 (Covid-19) by the numbers. Elife 9, 697–698.

    4. Brian, D.A., Baric, R.S., 2005. Coronavirus genome structure and replication. In: Current Topics in Microbiology and Immunology, pp. 1–30.

    5. Burbelo, P.D., Riedo, F.X., Morishima, C., Rawlings, S., Smith, D., Das, S., Strich, J.R., Chertow, D.S., Davey, R.T., Cohen, J.I., 2020. Sensitivity in detection of antibodies to nucleocapsid and spike proteins of severe acute respiratory syndrome coronavirus 2 in patients with coronavirus disease 2019. J. Infect. Dis. 222, 206–213.

    6. Cohen-Dvashi, H., Weinstein, J., Katz, M., Ashkenazy-Eilon, M., Mor, Y., Shimon, A., Achdout, H., Tamir, H., Israely, T., Strobelt, R., Shemesh, M., Stoler-Barak, L., Shulman, Z., Paran, N., Fleishman, S.J., Diskin, R., 2022. Anti-SARS-CoV-2 immunoadhesin remains effective against Omicron and other emerging variants of concern. iScience, 105193.

    7. Fehr, A.R., Perlman, S., 2015. Coronaviruses: an overview of their replication and pathogenesis. In: Maier, H.J., Bickerton, E., Britton, P. (Eds.), Coronaviruses: Methods and Protocols, Methods in Molecular Biology. Springer New York, New York, NY, pp. 1–23.

    8. Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, Jiazhen, Shan, S., Zhou, B., Song, S., Tang, X., Yu, Jinfang, Lan, J., Yuan, J., Wang, H., Zhao, Juanjuan, Zhang, S., Wang, Y., Shi, X., Liu, L., Zhao, Jincun, Wang, X., Zhang, Z., Zhang, L., 2020. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584, 115–119.

    9. Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., He, S., Zhou, Ziliang, Zhou, Zhechong, Chen, Q., Yan, Y., Zhang, C., Shan, H., Chen, S., 2020. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B 10, 1228–1238.

    10. Ludwig, S., Zarbock, A., 2020. Coronaviruses and SARS-CoV-2: a brief overview. Anesth. Analg. 131, 93–96.

    11. Naqvi, A.A.T., Fatima, K., Mohammad, T., Fatima, U., Singh, I.K., Singh, A., Atif, S.M., Hariprasad, G., Hasan, G.M., Hassan, M.I., 2020. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim. Biophys. Acta, Mol. Basis Dis. 1866, 165878.

    12. Ni, L., Ye, F., Cheng, M.L., Feng, Y., Deng, Y.Q., Zhao, H., Wei, P., Ge, J., Gou, M., Li, X., Sun, L., Cao, T., Wang, P., Zhou, C., Zhang, R., Liang, P., Guo, H., Wang, X., Qin, C.F., Chen, F., Dong, C., 2020. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity 52, 971–977.e3.

    13. Peng, Y., Du, N., Lei, Y., Dorje, S., Qi, J., Luo, T., Gao, G.F., Song, H., 2020. Structures of the SARS -CoV-2 nucleocapsid and their perspectives for drug design. EMBO J. 39, 1–12.

    14. Sun, X., Yi, C., Zhu, Y., Ding, L., Xia, S., Chen, X., Liu, M., Gu, C., Lu, X., Fu, Y., Chen, S., Zhang, T., Zhang, Y., Yang, Z., Ma, L., Gu, W., Hu, G., Du, S., Yan, R., Fu, W., Yuan, S., Qiu, C., Zhao, C., Zhang, X., He, Y., Qu, A., Zhou, X., Li, X., Wong, G., Deng, Q., Zhou, Q., Lu, H., Ling, Z., Ding, J., Lu, L., Xu, J., Xie, Y., Sun, B., 2022. Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARSCoV-2. Nat. Microbiol. 7, 1063–1074.

    15. Wang, S., Wu, Y., Wang, Y., Chen, Z., Ying, D., Lin, X., Liu, C., Lin, M., Zhang, J., Zhu, Y., Guo, S., Shang, H., Chen, X., Qiang, H., Yin, Y., Tang, Z., Zheng, Z., Xia, N., 2022. Potential of antibody pair targeting conserved antigenic sites in diagnosis of SARSCoV-2 variants infection. J. Virol. Methods 309, 114597.

    16. Xiang, F., Wang, X., He, X., Peng, Z., Yang, B., Zhang, J., Zhou, Q., Ye, H., Ma, Y., Li, H., Wei, X., Cai, P., Ma, W.L., 2020. Antibody detection and dynamic characteristics in patients with coronavirus disease 2019. Clin. Infect. Dis. 71, 1930–1934.

    17. Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., Zhong, W., Hao, P., 2020. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 63, 457–460.

    18. Zeng, W., Liu, G., Ma, H., Zhao, D., Yang, Yunru, Liu, M., Mohammed, A., Zhao, C., Yang, Yun, Xie, J., Ding, C., Ma, X., Weng, J., Gao, Y., He, H., Jin, T., 2020. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem. Biophys. Res. Commun. 527, 618–623.

    19. Zhou, P., Yang, X. Lou, Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R., Di, Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F., Shi, Z.L., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273.

  • 加载中

Article Metrics

Article views(253) PDF downloads(2) Cited by()

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    A pair of SARS-CoV-2 nucleocapsid protein monoclonal antibodies shows high specificity and sensitivity for diagnosis

      Corresponding author: Run Shi, runshi@gzhmu.edu.cn
      Corresponding author: Mingjian Lu, sange1234@sina.com
      Corresponding author: Chaoyang Li, chaoyangli@gzhmu.edu.cn
    • a Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, 510095, China;
    • b State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China;
    • c Department of Interventional Radiology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China

    Abstract: Highlights
    1. Seven monoclonal antibodies (mAbs) against SARS-CoV-2 nucleocapsid protein are produced, which can be applied in ELISA, Western blotting, and immunofluorescence staining.
    2. A pair of mAbs, 2G11/bio-1C7, can detect SARS-CoV-2 nucleocapsid protein as low as 15 pg/well in the double sandwich ELISA.
    3. The mAb, 2G11, shows 97.4% sensitivity and 100% specificity for diagnosing the human blood samples.

    Reference (19) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return