For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: Ruikun Du, Qinghua Cui, Zinuo Chen, Xiujuan Zhao, Xiaojing Lin, Lijun Rong. Revisiting influenza A virus life cycle from a perspective of genome balance .VIROLOGICA SINICA, 2023, 38(1) : 1-8.

Revisiting influenza A virus life cycle from a perspective of genome balance

  • Corresponding author: Ruikun Du,
    Lijun Rong,
  • Received Date: 05 August 2022
    Accepted Date: 18 October 2022
    Available online: 27 October 2022
  • Influenza A virus (IAV) genome comprises eight negative-sense RNA segments, of which the replication is well orchestrated and the delicate balance of multiple segments are dynamically regulated throughout IAV life cycle. However, previous studies seldom discuss these balances except for functional hemagglutinin-neuraminidase balance that is pivotal for both virus entry and release. Therefore, we attempt to revisit IAV life cycle by highlighting the critical role of "genome balance". Moreover, we raise a "balance regression" model of IAV evolution that the virus evolves to rebalance its genome after reassortment or interspecies transmission, and direct a "balance compensation" strategy to rectify the "genome imbalance" as a result of artificial modifications during creation of recombinant IAVs. This review not only improves our understanding of IAV life cycle, but also facilitates both basic and applied research of IAV in future.

  • 加载中
    1. Arai Y, Elgendy EM, Daidoji T, Ibrahim MS, Ono T, Sriwilaijaroen N, Suzuki Y, Nakaya T, Matsumoto K, Watanabe Y. 2020. H9N2 influenza virus infections in human cells require a balance between neuraminidase sialidase activity and hemagglutinin receptor affinity. J Virol, 94:e01210-20.

    2. Bae SH, Cheong HK, Lee JH, Cheong C, Kainosho M, Choi BS. 2001. Structural features of an influenza virus promoter and their implications for viral rna synthesis. Proc Natl Acad Sci U S A, 98:10602-10607.

    3. Bancroft CT, Parslow TG. 2002. Evidence for segment-nonspecific packaging of the influenza a virus genome. J Virol, 76:7133-7139.

    4. Beerens N, Heutink R, Harders F, Bossers A, Koch G, Peeters B. 2020. Emergence and selection of a highly pathogenic avian influenza H7N3 virus. J Virol, 94:e01818-19.

    5. Bolte H, Rosu ME, Hagelauer E, García-Sastre A, Schwemmle M. 2019. Packaging of the influenza virus genome is governed by a plastic network of RNA- and nucleoprotein-mediated interactions. J Virol, 93:e01861-18.

    6. Byrd-Leotis L, Cummings RD, Steinhauer DA. 2017. The interplay between the host receptor and influenza virus hemagglutinin and neuraminidase. Int J Mol Sci, 18:1541.

    7. Cai H, Liu M, Russell CJ. 2018. Directed evolution of an influenza reporter virus to restore replication and virulence and enhance noninvasive bioluminescence imaging in mice. J Virol, 92:e00593-18.

    8. Castrucci MR, Kawaoka Y. 1993. Biologic importance of neuraminidase stalk length in influenza a virus. J Virol, 67:759-764.

    9. Chauhan RP, Gordon ML. 2022. An overview of influenza a virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes, 58:255-269.

    10. Chen H, Yuan H, Gao R, Zhang J, Wang D, Xiong Y, Fan G, Yang F, Li X, Zhou J, Zou S, Yang L, Chen T, Dong L, Bo H, Zhao X, Zhang Y, Lan Y, Bai T, Dong J, Li Q, Wang S, Zhang Y, Li H, Gong T, Shi Y, Ni X, Li J, Zhou J, Fan J, Wu J, Zhou X, Hu M, Wan J, Yang W, Li D, Wu G, Feng Z, Gao GF, Wang Y, Jin Q, Liu M, Shu Y. 2014. Clinical and epidemiological characteristics of a fatal case of avian influenza a H10N8 virus infection:A descriptive study. Lancet, 383:714-721.

    11. Chen Z, Cui Q, Caffrey M, Rong L, Du R. 2021. Small molecule inhibitors of influenza virus entry. Pharmaceuticals (Basel), 14:587.

    12. Chou YY, Vafabakhsh R, Doğanay S, Gao Q, Ha T, Palese P. 2012. One influenza virus particle packages eight unique viral rnas as shown by fish analysis. Proc Natl Acad Sci U S A, 109:9101-9106.

    13. Chua MA, Schmid S, Perez JT, Langlois RA, Tenoever BR. 2013. Influenza a virus utilizes suboptimal splicing to coordinate the timing of infection. Cell Rep, 3:23-29.

    14. Chutinimitkul S, Herfst S, Steel J, Lowen AC, Ye J, van Riel D, Schrauwen EJ, Bestebroer TM, Koel B, Burke DF, Sutherland-Cash KH, Whittleston CS, Russell CA, Wales DJ, Smith DJ, Jonges M, Meijer A, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, García-Sastre A, Perez DR, Fouchier RA. 2010. Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. J Virol, 84:11802-11813.

    15. Cianci C, Tiley L, Krystal M. 1995. Differential activation of the influenza virus polymerase via template rna binding. J Virol, 69:3995-3999.

    16. Deng T, Vreede FT, Brownlee GG. 2006. Different de novo initiation strategies are used by influenza virus rna polymerase on its crna and viral rna promoters during viral RNA replication. J Virol, 80:2337-2348.

    17. Du R, Cui Q, Rong L. 2019. Competitive cooperation of hemagglutinin and neuraminidase during influenza a virus entry. Viruses, 11:458.

    18. Du R, Cui Q, Rong L. 2021. Flu universal vaccines:New tricks on an old virus. Virol Sin, 36:13-24.

    19. Eisfeld AJ, Neumann G, Kawaoka Y. 2015. At the centre:Influenza a virus ribonucleoproteins. Nat Rev Microbiol, 13:28-41.

    20. Enami M, Sharma G, Benham C, Palese P. 1991. An influenza virus containing nine different RNA segments. Virology, 185:291-298.

    21. Fan H, Walker AP, Carrique L, Keown JR, Serna Martin I, Karia D, Sharps J, Hengrung N, Pardon E, Steyaert J, Grimes JM, Fodor E. 2019. Structures of influenza a virus RNA polymerase offer insight into viral genome replication. Nature, 573:287-290.

    22. Fay EJ, Aron SL, Macchietto MG, Markman MW, Esser-Nobis K, Gale M, Jr., Shen S, Langlois RA. 2020. Cell type- and replication stage-specific influenza virus responses in vivo. PLoS Pathog, 16:e1008760.

    23. Ferraris O, Kessler N, Valette M, Lina B. 2006. Evolution of the susceptibility to antiviral drugs of A/H3N2 influenza viruses isolated in france from 2002 to 2005. Vaccine, 24:6656-6659.

    24. Flick R, Neumann G, Hoffmann E, Neumeier E, Hobom G. 1996. Promoter elements in the influenza vRNA terminal structure. RNA, 2:1046-1057.

    25. Fodor E, Pritlove DC, Brownlee GG. 1995. Characterization of the RNA-fork model of virion rna in the initiation of transcription in influenza a virus. J Virol, 69:4012-4019.

    26. Fournier E, Moules V, Essere B, Paillart JC, Sirbat JD, Isel C, Cavalier A, Rolland JP, Thomas D, Lina B, Marquet R. 2012. A supramolecular assembly formed by influenza a virus genomic RNA segments. Nucleic Acids Res, 40:2197-2209.

    27. França M, Stallknecht DE, Howerth EW. 2013. Expression and distribution of sialic acid influenza virus receptors in wild birds. Avian Pathol, 42:60-71.

    28. Fujii Y, Goto H, Watanabe T, Yoshida T, Kawaoka Y. 2003. Selective incorporation of influenza virus rna segments into virions. Proc Natl Acad Sci U S A, 100:2002-2007.

    29. Furusawa Y, Yamada S, da Silva Lopes TJ, Dutta J, Khan Z, Kriti D, van Bakel H, Kawaoka Y. 2019. Influenza virus polymerase mutation stabilizes a foreign gene inserted into the virus genome by enhancing the transcription/replication efficiency of the modified segment. mBio, 10:e01794-19.

    30. Gambotto A, Barratt-Boyes SM, de Jong MD, Neumann G, Kawaoka Y. 2008. Human infection with highly pathogenic H5N1 influenza virus. Lancet, 371:1464-1475.

    31. Gao Q, Lowen AC, Wang TT, Palese P. 2010. A nine-segment influenza a virus carrying subtype H1 and H3 hemagglutinins. J Virol, 84:8062-8071.

    32. Gao Q, Chou YY, Doğanay S, Vafabakhsh R, Ha T, Palese P. 2012. The influenza a virus PB2, PA, NP, and M segments play a pivotal role during genome packaging. J Virol, 86:7043-7051.

    33. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Zhang Y, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y. 2013. Human infection with a novel avian-origin influenza a (H7N9) virus. N Engl J Med, 368:1888-1897.

    34. Gavazzi C, Isel C, Fournier E, Moules V, Cavalier A, Thomas D, Lina B, Marquet R. 2013. An in vitro network of intermolecular interactions between viral rna segments of an avian H5N2 influenza a virus:Comparison with a human H3N2 virus. Nucleic Acids Res, 41:1241-1254.

    35. Gaymard A, Le Briand N, Frobert E, Lina B, Escuret V. 2016. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin Microbiol Infect, 22:975-983.

    36. Glaser L, Stevens J, Zamarin D, Wilson IA, García-Sastre A, Tumpey TM, Basler CF, Taubenberger JK, Palese P. 2005. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol, 79:11533-11536.

    37. Gu W, Shi J, Cui P, Yan C, Zhang Y, Wang C, Zhang Y, Xing X, Zeng X, Liu L, Tian G, Suzuki Y, Li C, Deng G, Chen H. 2022. Novel H5N6 reassortants bearing the clade ha gene of H5N8 virus have been detected in poultry and caused multiple human infections in china. Emerg Microbes Infect, 11:1174-1185.

    38. Hamilton JR, Vijayakumar G, Palese P. 2018. A recombinant antibody-expressing influenza virus delays tumor growth in a mouse model. Cell Rep, 22:1-7.

    39. Haralampiev I, Prisner S, Nitzan M, Schade M, Jolmes F, Schreiber M, Loidolt-Krüger M, Jongen K, Chamiolo J, Nilson N, Winter F, Friedman N, Seitz O, Wolff T, Herrmann A. 2020. Selective flexible packaging pathways of the segmented genome of influenza a virus. Nat Commun, 11:4355.

    40. Heaton NS, Leyva-Grado VH, Tan GS, Eggink D, Hai R, Palese P. 2013. In vivo bioluminescent imaging of influenza a virus infection and characterization of novel cross-protective monoclonal antibodies. J Virol, 87:8272-8281.

    41. Hengrung N, El Omari K, Serna Martin I, Vreede FT, Cusack S, Rambo RP, Vonrhein C, Bricogne G, Stuart DI, Grimes JM, Fodor E. 2015. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature, 527:114-117.

    42. Hoffmann TW, Munier S, Larcher T, Soubieux D, Ledevin M, Esnault E, Tourdes A, Croville G, Guérin JL, Quéré P, Volmer R, Naffakh N, Marc D. 2012. Length variations in the NA stalk of an H7N1 influenza virus have opposite effects on viral excretion in chickens and ducks. J Virol, 86:584-588.

    43. Hossain MJ, Hickman D, Perez DR. 2008. Evidence of expanded host range and mammalian-associated genetic changes in a duck H9N2 influenza virus following adaptation in quail and chickens. PLoS One, 3:e3170.

    44. Hsu MT, Parvin JD, Gupta S, Krystal M, Palese P. 1987. Genomic rnas of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci U S A, 84:8140-8144.

    45. Huang S, Chen J, Chen Q, Wang H, Yao Y, Chen J, Chen Z. 2013. A second CRM1-dependent nuclear export signal in the influenza a virus NS2 protein contributes to the nuclear export of viral ribonucleoproteins. J Virol, 87:767-778.

    46. Hutchinson EC, von Kirchbach JC, Gog JR, Digard P. 2010. Genome packaging in influenza a virus. J Gen Virol, 91:313-328.

    47. Inglis SC, Brown CM. 1984. Differences in the control of virus mrna splicing during permissive or abortive infection with influenza a (fowl plague) virus. J Gen Virol, 65 ( Pt 1):153-164.

    48. Kotomina T, Isakova-Sivak I, Matyushenko V, Kim KH, Lee Y, Jung YJ, Kang SM, Rudenko L. 2019. Recombinant live attenuated influenza vaccine viruses carrying CD8 T-cell epitopes of respiratory syncytial virus protect mice against both pathogens without inflammatory disease. Antiviral Res, 168:9-17.

    49. Lackenby A, Besselaar TG, Daniels RS, Fry A, Gregory V, Gubareva LV, Huang W, Hurt AC, Leang SK, Lee RTC, Lo J, Lollis L, Maurer-Stroh S, Odagiri T, Pereyaslov D, Takashita E, Wang D, Zhang W, Meijer A. 2018. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016-2017. Antiviral Res, 157:38-46.

    50. Li C, Bu Z, Chen H. 2014. Avian influenza vaccines against H5N1 ‘bird flu’. Trends Biotechnol, 32:147-156.

    51. Li C, Hatta M, Nidom CA, Muramoto Y, Watanabe S, Neumann G, Kawaoka Y. 2010. Reassortment between avian h5n1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. Proc Natl Acad Sci U S A, 107:4687-4692.

    52. Li X, Gu M, Zheng Q, Gao R, Liu X. 2021. Packaging signal of influenza a virus. Virol J, 18:36.

    53. Liang L, Jiang L, Li J, Zhao Q, Wang J, He X, Huang S, Wang Q, Zhao Y, Wang G, Sun N, Deng G, Shi J, Tian G, Zeng X, Jiang Y, Liu L, Liu J, Chen P, Bu Z, Kawaoka Y, Chen H, Li C. 2019. Low polymerase activity attributed to PA drives the acquisition of the PB2 E627K mutation of H7N9 avian influenza virus in mammals. mBio, 10:e01162-19.

    54. Liu G, Park HS, Pyo HM, Liu Q, Zhou Y. 2015. Influenza a virus panhandle structure is directly involved in RIG-I activation and interferon induction. J Virol, 89:6067-6079.

    55. Long JS, Giotis ES, Moncorgé O, Frise R, Mistry B, James J, Morisson M, Iqbal M, Vignal A, Skinner MA, Barclay WS. 2016. Species difference in ANP32A underlies influenza a virus polymerase host restriction. Nature, 529:101-104.

    56. Luo M. 2012. Influenza virus entry. Adv Exp Med Biol, 726:201-221.

    57. Luo W, Zhang J, Liang L, Wang G, Li Q, Zhu P, Zhou Y, Li J, Zhao Y, Sun N, Huang S, Zhou C, Chang Y, Cui P, Chen P, Jiang Y, Deng G, Bu Z, Li C, Jiang L, Chen H. 2018. Phospholipid scramblase 1 interacts with influenza a virus NP, impairing its nuclear import and thereby suppressing virus replication. PLoS Pathog, 14:e1006851.

    58. Ma J, Liu K, Xue C, Zhou J, Xu S, Ren Y, Zheng J, Cao Y. 2013. Impact of the segment-specific region of the 3'-untranslated region of the influenza a virus PB1 segment on protein expression. Virus Genes, 47:429-438.

    59. Manicassamy B, Manicassamy S, Belicha-Villanueva A, Pisanelli G, Pulendran B, García-Sastre A. 2010. Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci U S A, 107:11531-11536.

    60. Mänz B, Schwemmle M, Brunotte L. 2013. Adaptation of avian influenza a virus polymerase in mammals to overcome the host species barrier. J Virol, 87:7200-7209.

    61. Martin K, Helenius A. 1991. Nuclear transport of influenza virus ribonucleoproteins:The viral matrix protein (M1) promotes export and inhibits import. Cell, 67:117-130.

    62. Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, Donatelli I, Kawaoka Y. 2000. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol, 74:8502-8512.

    63. Matyushenko V, Kotomina T, Kudryavtsev I, Mezhenskaya D, Prokopenko P, Matushkina A, Sivak K, Muzhikyan A, Rudenko L, Isakova-Sivak I. 2020. Conserved T-cell epitopes of respiratory syncytial virus (RSV) delivered by recombinant live attenuated influenza vaccine viruses efficiently induce rsv-specific lung-localized memory T cells and augment influenza-specific resident memory T-cell responses. Antiviral Res, 182:104864.

    64. Miyamoto S, Noda T. 2020. In vitro vRNA-vRNA interactions in the H1N1 influenza a virus genome. Microbiol Immunol, 64:202-209.

    65. Mor A, White A, Zhang K, Thompson M, Esparza M, Muñoz-Moreno R, Koide K, Lynch KW, García-Sastre A, Fontoura BM. 2016. Influenza virus mrna trafficking through host nuclear speckles. Nat Microbiol, 1:16069.

    66. Muramoto Y, Takada A, Fujii K, Noda T, Iwatsuki-Horimoto K, Watanabe S, Horimoto T, Kida H, Kawaoka Y. 2006. Hierarchy among viral rna (vRNA) segments in their role in vRNA incorporation into influenza a virions. J Virol, 80:2318-2325.

    67. Nayak DP, Balogun RA, Yamada H, Zhou ZH, Barman S. 2009. Influenza virus morphogenesis and budding. Virus Res, 143:147-161.

    68. Noble E, Mathews DH, Chen JL, Turner DH, Takimoto T, Kim B. 2011. Biophysical analysis of influenza a virus rna promoter at physiological temperatures. J Biol Chem, 286:22965-22970.

    69. Noda T, Sagara H, Yen A, Takada A, Kida H, Cheng RH, Kawaoka Y. 2006. Architecture of ribonucleoprotein complexes in influenza a virus particles. Nature, 439:490-492.

    70. Noda T, Murakami S, Nakatsu S, Imai H, Muramoto Y, Shindo K, Sagara H, Kawaoka Y. 2018. Importance of the 1+7 configuration of ribonucleoprotein complexes for influenza a virus genome packaging. Nat Commun, 9:54.

    71. Nogales A, DeDiego ML, Topham DJ, Martínez-Sobrido L. 2016. Rearrangement of influenza virus spliced segments for the development of live-attenuated vaccines. J Virol, 90:6291-6302.

    72. Nogales A, Avila-Perez G, Rangel-MorenoT J, Chiem K, DeDiego ML, Martínez-Sobrido L. 2019. A novel fluorescent and bioluminescent bireporter influenza A virus to evaluate viral infections. J Virol, 93:e00032-19.

    73. Palese P, Tobita K, Ueda M, Compans RW. 1974. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology, 61:397-410.

    74. Pan W, Dong J, Chen P, Zhang B, Li Z, Chen L. 2018. Development and application of bioluminescence imaging for the influenza a virus. J Thorac Dis, 10:S2230-s2237.

    75. Park S, Il Kim J, Lee I, Bae JY, Yoo K, Nam M, Kim J, Sook Park M, Song KJ, Song JW, Kee SH, Park MS. 2017. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza a viruses. Sci Rep, 7:10928.

    76. Perez JT, Varble A, Sachidanandam R, Zlatev I, Manoharan M, García-Sastre A, tenOever BR. 2010. Influenza a virus-generated small rnas regulate the switch from transcription to replication. Proc Natl Acad Sci U S A, 107:11525-11530.

    77. Pflug A, Guilligay D, Reich S, Cusack S. 2014. Structure of influenza a polymerase bound to the viral RNA promoter. Nature, 516:355-360.

    78. Phan T, Fay EJ, Lee Z, Aron S, Hu WS, Langlois RA. 2021. Segment-specific kinetics of mRNA, cRNA and vRNA accumulation during influenza infection. J Virol, 95:e02102-20.

    79. Plotch SJ, Bouloy M, Ulmanen I, Krug RM. 1981. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped rnas to generate the primers that initiate viral RNA transcription. Cell, 23:847-858.

    80. Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crépin T, Hart D, Lunardi T, Nanao M, Ruigrok RW, Cusack S. 2014. Structural insight into cap-snatching and rna synthesis by influenza polymerase. Nature, 516:361-366.

    81. Reiter-Scherer V, Cuellar-Camacho JL, Bhatia S, Haag R, Herrmann A, Lauster D, Rabe JP. 2019. Force spectroscopy shows dynamic binding of influenza hemagglutinin and neuraminidase to sialic acid. Biophys J, 116:1037-1048.

    82. Resa-Infante P, Jorba N, Coloma R, Ortin J. 2011. The influenza virus rna synthesis machine:Advances in its structure and function. RNA Biol, 8:207-215.

    83. Richard M, Erny A, Caré B, Traversier A, Barthélémy M, Hay A, Lin YP, Ferraris O, Lina B. 2012. Rescue of a H3N2 influenza virus containing a deficient neuraminidase protein by a hemagglutinin with a low receptor-binding affinity. PLoS One, 7:e33880.

    84. Rogers GN, Paulson JC. 1983. Receptor determinants of human and animal influenza virus isolates:Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology, 127:361-373.

    85. Samji T. 2009. Influenza a:Understanding the viral life cycle. Yale J Biol Med, 82:153-159.

    86. Shao W, Li X, Goraya MU, Wang S, Chen JL. 2017. Evolution of influenza a virus by mutation and re-assortment. Int J Mol Sci, 18:1650.

    87. Shimizu T, Takizawa N, Watanabe K, Nagata K, Kobayashi N. 2011. Crucial role of the influenza virus NS2 (NEP) c-terminal domain in M1 binding and nuclear export of vRNP. FEBS Lett, 585:41-46.

    88. Shin H, Jang Y, Jun S, Lee Y, Kim M. 2021. Determination of the vRNA and cRNA promoter activity by M segment-specific non-coding nucleotides of influenza a virus. RNA Biol, 18:785-795.

    89. Sorrell EM, Song H, Pena L, Perez DR. 2010. A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza a virus in the respiratory tract of chickens. J Virol, 84:11831-11840.

    90. Sun W, Li J, Han P, Yang Y, Kang X, Li Y, Li J, Zhang Y, Wu X, Jiang T, Qin C, Hu Y, Zhu Q. 2014. U4 at the 3' UTR of PB1 segment of H5N1 influenza virus promotes rna polymerase activity and contributes to viral pathogenicity. PLoS One, 9:e93366.

    91. Sun Y, Liu J. 2015. H9n2 influenza virus in china:A cause of concern. Protein Cell, 6:18-25.

    92. Sun Y, Qin K, Wang J, Pu J, Tang Q, Hu Y, Bi Y, Zhao X, Yang H, Shu Y, Liu J. 2011. High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses. Proc Natl Acad Sci U S A, 108:4164-4169.

    93. Takashita E. 2021. Influenza polymerase inhibitors:Mechanisms of action and resistance. Cold Spring Harb Perspect Med, 11:a038687.

    94. Taubenberger JK, Kash JC. 2010. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe, 7:440-451.

    95. Te Velthuis AJ, Fodor E. 2016. Influenza virus RNA polymerase:Insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol, 14:479-493.

    96. Teng Q, Xu D, Shen W, Liu Q, Rong G, Li X, Yan L, Yang J, Chen H, Yu H, Ma W, Li Z. 2016. A single mutation at position 190 in hemagglutinin enhances binding affinity for human type sialic acid receptor and replication of H9N2 avian influenza virus in mice. J Virol, 90:9806-9825.

    97. Thierry E, Guilligay D, Kosinski J, Bock T, Gaudon S, Round A, Pflug A, Hengrung N, El Omari K, Baudin F, Hart DJ, Beck M, Cusack S. 2016. Influenza polymerase can adopt an alternative configuration involving a radical repacking of PB2 domains. Mol Cell, 61:125-137.

    98. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO. 2013. New world bats harbor diverse influenza a viruses. PLoS Pathog, 9:e1003657.

    99. Valcárcel J, Portela A, Ortín J. 1991. Regulated M1 mRNA splicing in influenza virus-infected cells. J Gen Virol, 72 ( Pt 6):1301-1308.

    100. van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T. 2007. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol, 171:1215-1223.

    101. Vandoorn E, Parys A, Chepkwony S, Chiers K, Van Reeth K. 2022. Efficacy of the NS1-truncated live attenuated influenza virus vaccine for swine against infection with viruses of major north american and european H3N2 lineages. Vaccine, 40:2723-2732.

    102. Venev SV, Zeldovich KB. 2013. Segment self-repulsion is the major driving force of influenza genome packaging. Phys Rev Lett, 110:098104.

    103. Walther T, Karamanska R, Chan RW, Chan MC, Jia N, Air G, Hopton C, Wong MP, Dell A, Malik Peiris JS, Haslam SM, Nicholls JM. 2013. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog, 9:e1003223.

    104. Wang J, Li J, Zhao L, Cao M, Deng T. 2017. Dual roles of the hemagglutinin segment-specific noncoding nucleotides in the extended duplex region of the influenza a virus rna promoter. J Virol, 91:e01931-16.

    105. Wang L, Cui Q, Zhao X, Li P, Wang Y, Rong L, Du R. 2019. Generation of a reassortant influenza a subtype H3N2 virus expressing gaussia luciferase. Viruses, 11:665.

    106. Widjaja I, de Vries E, Rottier PJ, de Haan CA. 2012. Competition between influenza a virus genome segments. PLoS One, 7:e47529.

    107. Wilson IA, Skehel JJ, Wiley DC. 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 a resolution. Nature, 289:366-373.

    108. Wu R, Zhang X, Shao H, Luo Q, Yang J, Xu D. 2012. Characterization of influenza a virus with nine segments:Effect gene segment on virus property. Res Vet Sci, 93:1076-1080.

    109. Xiao Y, Zhang W, Pan M, Bauer DLV, Bi Y, Cao M, Fodor E, Deng T. 2021. Synergistic effect between 3'-terminal noncoding and adjacent coding regions of the influenza a virus hemagglutinin segment on template preference. J Virol, 95:e0087821.

    110. Xu G, Zhang X, Gao W, Wang C, Wang J, Sun H, Sun Y, Guo L, Zhang R, Chang KC, Liu J, Pu J. 2016. Prevailing PA mutation K356R in avian influenza H9N2 virus increases mammalian replication and pathogenicity. J Virol, 90:8105-8114.

    111. Yiu Lai K, Wing Yiu Ng G, Fai Wong K, Fan Ngai Hung I, Kam Fai Hong J, Fan Cheng F, Kwok Cheung Chan J. 2013. Human H7N9 avian influenza virus infection:A review and pandemic risk assessment. Emerg Microbes Infect, 2:e48.

    112. Zeng X, Tian G, Shi J, Deng G, Li C, Chen H. 2018. Vaccination of poultry successfully eliminated human infection with h7N9 virus in china. Sci China Life Sci, 61:1465-1473.

    113. Zhang H, Zhang Z, Wang Y, Wang M, Wang X, Zhang X, Ji S, Du C, Chen H, Wang X. 2019. Fundamental contribution and host range determination of ANP32A and ANP32B in influenza a virus polymerase activity. J Virol, 93:e00174-19.

    114. Zhang J, Huang F, Tan L, Bai C, Chen B, Liu J, Liang J, Liu C, Zhang S, Lu G, Chen Y, Zhang H. 2016. Host protein moloney leukemia virus 10 (MOV10) acts as a restriction factor of influenza a virus by inhibiting the nuclear import of the viral nucleoprotein. J Virol, 90:3966-3980.

    115. Zhang Y, Zhang Q, Kong H, Jiang Y, Gao Y, Deng G, Shi J, Tian G, Liu L, Liu J, Guan Y, Bu Z, Chen H. 2013. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science, 340:1459-1463.

    116. Zhao L, Peng Y, Zhou K, Cao M, Wang J, Wang X, Jiang T, Deng T. 2014. New insights into the nonconserved noncoding region of the subtype-determinant hemagglutinin and neuraminidase segments of influenza a viruses. J Virol, 88:11493-11503.

    117. Zhao X, Wang L, Cui Q, Li P, Wang Y, Zhang Y, Yang Y, Rong L, Du R. 2018. A mechanism underlying attenuation of recombinant influenza a viruses carrying reporter genes. Viruses, 10:679.

    118. Zhao X, Lin X, Li P, Chen Z, Zhang C, Manicassamy B, Rong L, Cui Q, Du R. 2022. Expanding the tolerance of segmented influenza a virus genome using a balance compensation strategy. PLoS Pathog, 18:e1010756.

    119. Zhu H, Wang D, Kelvin DJ, Li L, Zheng Z, Yoon SW, Wong SS, Farooqui A, Wang J, Banner D, Chen R, Zheng R, Zhou J, Zhang Y, Hong W, Dong W, Cai Q, Roehrl MH, Huang SS, Kelvin AA, Yao T, Zhou B, Chen X, Leung GM, Poon LL, Webster RG, Webby RJ, Peiris JS, Guan Y, Shu Y. 2013. Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs. Science, 341:183-186.

  • 加载中

Article Metrics

Article views(275) PDF downloads(22) Cited by()

Proportional views

    Revisiting influenza A virus life cycle from a perspective of genome balance

      Corresponding author: Ruikun Du,
      Corresponding author: Lijun Rong,
    • a. Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China;
    • b. Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China;
    • c. College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China;
    • d. Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA

    Abstract: Influenza A virus (IAV) genome comprises eight negative-sense RNA segments, of which the replication is well orchestrated and the delicate balance of multiple segments are dynamically regulated throughout IAV life cycle. However, previous studies seldom discuss these balances except for functional hemagglutinin-neuraminidase balance that is pivotal for both virus entry and release. Therefore, we attempt to revisit IAV life cycle by highlighting the critical role of "genome balance". Moreover, we raise a "balance regression" model of IAV evolution that the virus evolves to rebalance its genome after reassortment or interspecies transmission, and direct a "balance compensation" strategy to rectify the "genome imbalance" as a result of artificial modifications during creation of recombinant IAVs. This review not only improves our understanding of IAV life cycle, but also facilitates both basic and applied research of IAV in future.

    Reference (119) Relative (20)



    DownLoad:  Full-Size Img  PowerPoint