For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: Yuqi Zhu, Xinyi Yang, Jingna Xun, Jun Liu, Qing Wen, Yixiao Lin, Xiaoting Shen, Jun Chen, Songhua Yuan, Xiaying Zhao, Jing Wang, Hanyu Pan, Jinlong Yang, Zhiming Liang, Yue Liang, Qinru Lin, Huitong Liang, Min Li, Jianping Liu, Yinzhong Shen, Xiaoyan Zhang, Pengfei Wang, Daru Lu, Chunhua Yin, Jianqing Xu, Shibo Jiang, Hongzhou Lu, Huanzhang Zhu. Neutralization of five SARS-CoV-2 variants of concern by convalescent and BBIBP-CorV vaccinee serum [J].VIROLOGICA SINICA, 2022, 37(6) : 831-841.  http://dx.doi.org/10.1016/j.virs.2022.10.006

Neutralization of five SARS-CoV-2 variants of concern by convalescent and BBIBP-CorV vaccinee serum

  • The prevalence of SARS-CoV-2 variants of concern (VOCs) is still escalating throughout the world. However, the level of neutralization of the inactivated viral vaccine recipients’ sera and convalescent sera against all VOCs, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron) remains to be lack of comparative analysis. Therefore, we constructed pseudoviruses of five VOCs using a lentiviral-based system and analyzed their viral infectivity and neutralization resistance to convalescent and BBIBP-CorV vaccinee serum at different times. Our results show that, compared with the wild-type strain (WT), five VOC pseudoviruses showed higher infection, of which B.1.617.2 and B.1.1.529 variant pseudoviruses exhibited higher infection rates than wild-type or other VOC strains, respectively. Sera from 10 vaccinated individuals at the 1, 3 and 5-month post second dose or from 10 convalescent at 14 and 200 days after discharge retained neutralizing activity against all strains but exhibited decreased neutralization activity significantly against the five VOC variant pseudoviruses over time compared to WT. Notably, 100% (30/30) of the vaccinee serum samples showed more than a 2.5-fold reduction in neutralizing activity against B.1.1.529, and 90% (18/20) of the convalescent serum samples showed more than 2.5-fold reduction in neutralization against B.1.1.529. These findings demonstrate the reduced protection against the VOCs in vaccinated and convalescent individuals over time, indicating that it is necessary to have a booster shot and develop new vaccines capable of eliciting broad neutralization antibodies.

  • 加载中
  • 10.1016j.virs.2022.10.006-ESM.docx
    1. Ai, J., Wang, X., He, X., Zhao, X., Zhang, Y., Jiang, Y., Li, M., Cui, Y., Chen, Y., Qiao, R., Li, L., Yang, L., Li, Y., Hu, Z., Zhang, W., Wang, P., 2022. Antibody evasion of SARSCoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages. Cell Host Microbe 30, 1077-1083.e4.

    2. Benton, D.J., Wrobel, A.G., Xu, P., Roustan, C., Martin, S.R., Rosenthal, P.B., Skehel, J.J., Gamblin, S.J., 2020. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 588, 327-330.

    3. Callaway, E., 2021. Heavily mutated Omicron variant puts scientists on alert. Nature 600, 21.

    4. Cao, Y., Yisimayi, A., Jian, F., Song, W., Xiao, T., Wang, L., Du, S., Wang, J., Li, Q., Chen, X., Yu, Y., Wang, P., Zhang, Z., Liu, P., An, R., Hao, X., Wang, Yao, Wang, J., Feng, R., Sun, H., Zhao, L., Zhang, W., Zhao, D., Zheng, J., Yu, L., Li, C., Zhang, N., Wang, R., Niu, X., Yang, S., Song, X., Chai, Y., Hu, Y., Shi, Y., Zheng, L., Li, Z., Gu, Q., Shao, F., Huang, W., Jin, R., Shen, Z., Wang, Youchun, Wang, X., Xiao, J., Xie, X.S., 2022. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 608, 593-602.

    5. Cele, S., Jackson, L., Khoury, D.S., Khan, K., Moyo-Gwete, T., Tegally, H., San, J.E., Cromer, D., Scheepers, C., Amoako, D.G., Karim, F., Bernstein, M., Lustig, G., Archary, D., Smith, M., Ganga, Y., Jule, Z., Reedoy, K., Hwa, S.-H., Giandhari, J., Blackburn, J.M., Gosnell, B.I., Abdool Karim, S.S., Hanekom, W., von Gottberg, A., Bhiman, J.N., Lessells, R.J., Moosa, M.-Y.S., Davenport, M.P., de Oliveira, T., Moore, P.L., Sigal, A., 2022. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 602, 654-656.

    6. Cerutti, G., Guo, Y.C., Zhou, T.Q., Gorman, J., Lee, M., Rapp, M., Reddem, E.R., Yu, J., Bahna, F., Bimela, J., Huang, Y.X., Katsamba, P.S., Liu, L.H., Nair, M.S., Rawi, R., Olia, A.S., Wang, P.F., Zhang, B.S., Chuang, G.Y., Ho, D.D., Sheng, Z.Z., Kwong, P.D., Shapiro, L., 2021. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe 29, 819-833.e7.

    7. Chen, R.T.E., Zhang, X.W., Case, J.B., Winkler, E.S., Liu, Y., VanBlargan, L.A., Liu, J.Y., Errico, J.M., Xie, X.P., Suryadevara, N., Gilchuk, P., Zost, S.J., Tahan, S., Droit, L., Turner, J.S., Kim, W., Schmitz, A.J., Thapa, M., Wang, D.V., Boon, A.C.M., Presti, R.M., O'Halloran, J.A., Kim, A.H.J., Deepak, P., Pinto, D., Fremont, D.H., Crowe, J.E., Corti, D., Virgin, H.W., Ellebedy, A.H., Shi, P.Y., Diamond, M.S., 2021. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serumderived polyclonal antibodies. Nat. Med. 27, 717-726.

    8. Cheng, S.M.S., Mok, C.K.P., Leung, Y.W.Y., Ng, S.S., Chan, K.C.K., Ko, F.W., Chen, C.K., Yiu, K., Lam, B.H.S., Lau, E.H.Y., Chan, K.K.P., Luk, L.L.H., Li, J.K.C., Tsang, L.C.H., Poon, L.L.M., Hui, D.S.C., Peiris, M., 2022. Neutralizing antibodies against the SARSCoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat. Med. 28, 486-489.

    9. Collier, D.A., De Marco, A., Ferreira, I.A.T.M., Meng, B., Datir, R.P., Walls, A.C., Kemp, S.A., Bassi, J., Pinto, D., Silacci-Fregni, C., Bianchi, S., Tortorici, M.A., Bowen, J., Culap, K., Jaconi, S., Cameroni, E., Snell, G., Pizzuto, M.S., Pellanda, A.F., Garzoni, C., Riva, A., Elmer, A., Kingston, N., Graves, B., Mccoy, L.E., Smith, K.G.C., Bradley, J.R., Temperton, N., Ceron-Gutierrez, L., Barcenas-Morales, G., Harvey, W., Virgin, H.W., Lanzavecchia, A., Piccoli, L., Doffinger, R., Wills, M., Veesler, D., Corti, D., Gupta, R.K., BioResource, C.-N., UK, C.-19G., 2021. Sensitivity of SARSCoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 593, 136-141.

    10. Crawford, K.H.D., Eguia, R., Dingens, A.S., Loes, A.N., Malone, K.D., Wolf, C.R., Chu, H.Y., Tortorici, M.A., Veesler, D., Murphy, M., Pettie, D., King, N.P., Balazs, A.B., Bloom, J.D., 2020. Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays. Viruses 12, 513.

    11. Daria, S., Bhuiyan, M.A., Islam, M.R., 2022. Detection of highly muted coronavirus variant Omicron (B.1.1.529) is triggering the alarm for South Asian countries:associated risk factors and preventive actions. J. Med. Virol. 94, 1267-1268.

    12. Faria, N.R., Mellan, T.A., Whittaker, C., Claro, I.M., Candido, D.D., Mishra, S., Crispim, M.A.E., Sales, F.C., Hawryluk, I., McCrone, J.T., Hulswit, R.J.G., Franco, L.A.M., Ramundo, M.S., de Jesus, J.G., Andrade, P.S., Coletti, T.M., Ferreira, G.M., Silva, C.A.M., Manuli, E.R., Pereira, R.H.M., Peixoto, P.S., Kraemer, M.U., Gaburo, N., Camilo, C.D., Hoeltgebaum, H., Souza, W.M., Rocha, E.C., de Souza, L.M., de Pinho, M.C., Araujo, L.J.T., Malta, F.S.V., de Lima, A.B., Silva, J.D., Zauli, D.A.G., Ferreira, A.C.D., Schnekenberg, R.P., Laydon, D.J., Walker, P.G.T., Schluter, H.M., dos Santos, A.L.P., Vidal, M.S., Del Caro, V.S., Filho, R.M.F., dos Santos, H.M., Aguiar, R.S., Proenca-Modena, J.L.P., Nelson, B., Hay, J.A., Monod, M., Miscouridou, X., Coupland, H., Sonabend, R., Vollmer, M., Gandy, A., Prete, C.A., Nascimento, V.H., Suchard, M.A., Bowden, T.A., Pond, S.L.K., Wu, C.H., Ratmann, O., Ferguson, N.M., Dye, C., Loman, N.J., Lemey, P., Rambaut, A., Fraiji, N.A., Carvalho, M.D.S.S., Pybus, O.G., Flaxman, S., Bhatt, S., Sabino, E.C., 2021. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372, 815-821.

    13. Galloway, S.E., Paul, P., MacCannell, D.R., Johansson, M.A., Brooks, J.T., MacNeil, A., Slayton, R.B., Tong, S., Silk, B.J., Armstrong, G.L., Biggerstaff, M., Dugan, V.G., 2021. Emergence of SARS-CoV-2 B.1.1.7 lineage - United States, december 29, 2020-January 12, 2021. MMWR Morb. Mortal. Wkly. Rep. 70, 95-99.

    14. Garcia-Beltran, W.F., Lam, E.C., St Denis, K., Nitido, A.D., Garcia, Z.H., Hauser, B.M., Feldman, J., Pavlovic, M.N., Gregory, D.J., Poznansky, M.C., Sigal, A., Schmidt, A.G., Iafrate, A.J., Naranbhai, V., Balazs, A.B., 2021. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184, 2523.

    15. Garcia-Beltran, W.F., St Denis, K.J., Hoelzemer, A., Lam, E.C., Nitido, A.D., Sheehan, M.L., Berrios, C., Ofoman, O., Chang, C.C., Hauser, B.M., Feldman, J., Roederer, A.L., Gregory, D.J., Poznansky, M.C., Schmidt, A.G., Iafrate, A.J., Naranbhai, V., Balazs, A.B., 2022. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 185, 457-466.e4.

    16. Greaney, A.J., Starr, T.N., Gilchuk, P., Zost, S.J., Binshtein, E., Loes, A.N., Hilton, S.K., Huddleston, J., Eguia, R., Crawford, K.H.D., Dingens, A.S., Nargi, R.S., Sutton, R.E., Suryadevara, N., Rothlauf, P.W., Liu, Z.M., Whelan, S.P.J., Carnahan, R.H., Crowe, J.E., Bloom, J.D., 2021. Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell Host Microbe 29, 44-57.e9.

    17. Harvey, W.T., Carabelli, A.M., Jackson, B., Gupta, R.K., Thomson, E.C., Harrison, E.M., Ludden, C., Reeve, R., Rambaut, A., Consortium, C.-G.U.K., Peacock, S.J., Robertson, D.L., 2021. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409-424.

    18. Hetemaki, I., Kaariainen, S., Alho, P., Mikkola, J., Savolainen-Kopra, C., Ikonen, N., Nohynek, H., Lyytikainen, O., 2021. An outbreak caused by the SARS-CoV-2 Delta variant (B.1.617.2) in a secondary care hospital in Finland, May 2021. Euro Surveill. 26, 2100636.

    19. Hoffmann, M., Arora, P., Gross, R., Seidel, A., Hornich, B.F., Hahn, A.S., Kruger, N., Graichen, L., Hofmann-Winkler, H., Kempf, A., Winkler, M.S., Schulz, S., Jack, H.M., Jahrsdorfer, B., Schrezenmeier, H., Muller, M., Kleger, A., Munch, J., Pohlmann, S., 2021. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 184, 2384-2393.e12.

    20. Hoffmann, M., Krüger, N., Schulz, S., Cossmann, A., Rocha, C., Kempf, A., Nehlmeier, I., Graichen, L., Moldenhauer, A.S., Winkler, M.S., Lier, M., Dopfer-Jablonka, A., J€ ack, H.M., Behrens, G.M.N., Pohlmann, S., 2022. The Omicron variant is highly € resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemic. Cell 185, 447-456.e11.

    21. Hyseni, I., Molesti, E., Benincasa, L., Piu, P., Casa, E., Temperton, N.J., Manenti, A., Montomoli, E., 2020. Characterisation of SARS-CoV-2 lentiviral pseudotypes and correlation between pseudotype-based neutralisation assays and live virus-based micro neutralisation assays. Viruses 12, 1011.

    22. Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., Hastie, K.M., Parker, M.D., Partridge, D.G., Evans, C.M., Freeman, T.M., de Silva, T.I., McDanal, C., Perez, L.G., Tang, H.L., Moon-Walker, A., Whelan, S.P., LaBranche, C.C., Saphire, E.O., Montefiori, D.C., Grp, S.C.-19G., 2020. Tracking changes in SARS-CoV-2 spike:evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812-827.e19.

    23. Liu, L.H., Iketani, S., Guo, Y.C., Chan, J.F.W., Wang, M., Liu, L.Y., Luo, Y., Chu, H., Huang, Y.M., Nair, M.S., Yu, J., Chik, K.K.H., Yuen, T.T.T., Yoon, C., To, K.K.W., Chen, H.L., Yin, M.T., Sobieszczyk, M.E., Huang, Y.X., Wang, H.H., Sheng, Z.Z., Yuen, K.Y., Ho, D.D., 2022. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676-681.

    24. Liu, J., Liu, Y., Xia, H., Zou, J., Weaver, S.C., Swanson, K.A., Cai, H., Cutler, M., Cooper, D., Muik, A., Jansen, K.U., Sahin, U., Xie, X., Dormitzer, P.R., Shi, P.Y., 2021. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature 596, 273-275.

    25. Liu, Y., Liu, J., Xia, H., Zhang, X., Fontes-Garfias, C.R., Swanson, K.A., Cai, H., Sarkar, R., Chen, W., Cutler, M., Cooper, D., Weaver, S.C., Muik, A., Sahin, U., Jansen, K.U., Xie, X., Dormitzer, P.R., Shi, P.Y., 2021. Neutralizing activity of BNT162b2-elicited serum. N. Engl. J. Med. 384, 1466-1468.

    26. Lu, L., Mok, B.W.Y., Chen, L.L., Chan, J.M.C., Tsang, O.T.Y., Lam, B.H.S., Chuang, V.W.M., Chu, A.W.H., Chan, W.M., Ip, J.D., Chan, B.P.C., Zhang, R.Q., Yip, C.C.Y., Cheng, V.C.C., Chan, K.H., Jin, D.Y., Hung, I.F.N., Yuen, K.Y., Chen, H.L., To, K.K.W., 2021. Neutralization of severe acute respiratory syndrome coronavirus 2 Omicron variant by sera from BNT162b2 or CoronaVac vaccine recipients. Clin. Infect. Dis. 75, e822-e826.

    27. Mautner, L., Hoyos, M., Dangel, A., Berger, C., Ehrhardt, A., Baiker, A., 2022. Replication kinetics and infectivity of SARS-CoV-2 variants of concern in common cell culture models. Virol. J. 19, 76.

    28. McCallum, M., De Marco, A., Lempp, F., Tortorici, M.A., Pinto, D., Walls, A.C., Beltramello, M., Chen, A., Liu, Z.M., Zatta, F., Zepeda, S., di Iulio, J., Bowen, J.E., Montiel-Ruiz, M., Zhou, J.Y., Rosen, L.E., Bianchi, S., Guarino, B., Fregni, C.S., Abdelnabi, R., Foo, S.Y.C., Rothlauf, P.W., Bloyet, L.M., Benigni, F., Cameroni, E., Neyts, J., Riva, A., Snell, G., Telenti, A., Whelan, S.P.J., Virgin, H.W., Corti, D., Pizzuto, M.S., Veesler, D., 2021. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184, 2332-2347.e16.

    29. Meng, B., Abdullahi, A., Ferreira, I.A.T.M., Goonawardane, N., Saito, A., Kimura, I., Yamasoba, D., Gerber, P.P., Fatihi, S., Rathore, S., Zepeda, S.K., Papa, G., Kemp, S.A., Ikeda, T., Toyoda, M., Tan, T.S., Kuramochi, J., Mitsunaga, S., Ueno, T., Shirakawa, K., Takaori-Kondo, A., Brevini, T., Mallery, D.L., Charles, O.J., Bowen, J.E., Joshi, A., Walls, A.C., Jackson, L., Martin, D., Smith, K.G.C., Bradley, J., Briggs, J.A.G., Choi, J., Madissoon, E., Meyer, K.B., Mlcochova, P., CeronGutierrez, L., Doffinger, R., Teichmann, S.A., Fisher, A.J., Pizzuto, M.S., de Marco, A., Corti, D., Hosmillo, M., Lee, J.H., James, L.C., Thukral, L., Veesler, D., Sigal, A., Sampaziotis, F., Goodfellow, I.G., Matheson, N.J., Sato, K., Gupta, R.K., 2022. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706-714.

    30. Piccoli, L., Park, Y.J., Tortorici, M.A., Czudnochowski, N., Walls, A.C., Beltramello, M., Silacci-Fregni, C., Pinto, D., Rosen, L.E., Bowen, J.E., Acton, O.J., Jaconi, S., Guarino, B., Minola, A., Zatta, F., Sprugasci, N., Bassi, J., Peter, A., De Marco, A., Nix, J.C., Mele, F., Jovic, S., Rodriguez, B.F., Gupta, S.V., Jin, F., Piumatti, G., Lo Presti, G., Pellanda, A.F., Biggiogero, M., Tarkowski, M., Pizzuto, M.S., Cameroni, E., Havenar-Daughton, C., Smithey, M., Hong, D., Lepori, V., Albanese, E., Ceschi, A., Bernasconi, E., Elzi, L., Ferrari, P., Garzoni, C., Riva, A., Snell, G., Sallusto, F., Fink, K., Virgin, H.W., Lanzavecchia, A., Corti, D., Veesler, D., 2020. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 183, 1024-1042.e21.

    31. Planas, D., Bruel, T., Grzelak, L., Guivel-Benhassine, F., Staropoli, I., Porrot, F., Planchais, C., Buchrieser, J., Rajah, M.M., Bishop, E., Albert, M., Donati, F., Prot, M., Behillil, S., Enouf, V., Maquart, M., Smati-Lafarge, M., Varon, E., Schortgen, F., Yahyaoui, L., Gonzalez, M., De Seze, J., Pere, H., Veyer, D., Seve, A., SimonLoriere, E., Fafi-Kremer, S., Stefic, K., Mouquet, H., Hocqueloux, L., van der Werf, S., Prazuck, T., Schwartz, O., 2021. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 27, 917-924.

    32. Riepler, L., Rössler, A., Falch, A., Volland, A., Borena, W., Kimpel, J., von Laer, D., 2020. Comparison of four SARS-CoV-2 neutralization assays. Vaccines 9, 13.

    33. Suzuki, R., Yamasoba, D., Kimura, I., Wang, L., Kishimoto, M., Ito, J., Morioka, Y., Nao, N., Nasser, H., Uriu, K., Kosugi, Y., Tsuda, M., Orba, Y., Sasaki, M., Shimizu, R., Kawabata, R., Yoshimatsu, K., Asakura, H., Nagashima, M., Sadamasu, K., Yoshimura, K., Sawa, H., Ikeda, T., Irie, T., Matsuno, K., Tanaka, S., Fukuhara, T., Sato, K., G2P-Japan, G.P.J., 2022. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature 603, 700-705.

    34. Tan, C.W., Lim, B.L., Young, B.E., Yeoh, A.Y.Y., Yung, C.F., Yap, W.C., Althaus, T., Chia, W.N., Zhu, F., Lye, D.C., Wang, L.F., 2022. Comparative Neutralisation Profile of SARS-CoV-2 Omicron Subvariants BA.2.75 and BA.5. The Lancet, Microbe. S2666-5247(22)00220-8.

    35. Tao, K., Tzou, P.L., Nouhin, J., Gupta, R.K., de Oliveira, T., Kosakovsky Pond, S.L., Fera, D., Shafer, R.W., 2021. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 22, 757-773.

    36. Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E.J., Msomi, N., Mlisana, K., von Gottberg, A., Walaza, S., Allam, M., Ismail, A., Mohale, T., Glass, A.J., Engelbrecht, S., Van Zyl, G., Preiser, W., Petruccione, F., Sigal, A., Hardie, D., Marais, G., Hsiao, N.Y., Korsman, S., Davies, M.A., Tyers, L., Mudau, I., York, D., Maslo, C., Goedhals, D., Abrahams, S., Laguda-Akingba, O., Alisoltani-Dehkordi, A., Godzik, A., Wibmer, C.K., Sewell, B.T., Lourenco, J., Alcantara, L.C.J., Kosakovsky Pond, S.L., Weaver, S., Martin, D., Lessells, R.J., Bhiman, J.N., Williamson, C., de Oliveira, T., 2021. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592, 438-443.

    37. Trifinopoulos, J., Nguyen, L.T., von Haeseler, A., Minh, B.Q., 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232-W235.

    38. Tuekprakhon, A., Nutalai, R., Dijokaite-Guraliuc, A., Zhou, D., Ginn, H.M., Selvaraj, M., Liu, C., Mentzer, A.J., Supasa, P., Duyvesteyn, H.M.E., Das, R., Skelly, D., Ritter, T.G., Amini, A., Bibi, S., Adele, S., Johnson, S.A., Constantinides, B., Webster, H., Temperton, N., Klenerman, P., Barnes, E., Dunachie, S.J., Crook, D., Pollard, A.J., Lambe, T., Goulder, P., Paterson, N.G., Williams, M.A., Hall, D.R., Fry, E.E., Huo, J., Mongkolsapaya, J., Ren, J., Stuart, D.I., Screaton, G.R., 2022. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell 185, 2422-2433.e13.

    39. Volz, E., Mishra, S., Chand, M., Barrett, J.C., Johnson, R., Geidelberg, L., Hinsley, W.R., Laydon, D.J., Dabrera, G., Toole, A.O., Amato, R., Ragonnet-Cronin, M., Harrison, I., Jackson, B., Ariani, C.V., Boyd, O., Loman, N.J., McCrone, J.T., Goncalves, S., Jorgensen, D., Myers, R., Hill, V., Jackson, D.K., Gaythorpe, K., Groves, N., Sillitoe, J., Kwiatkowski, D.P., Flaxman, S., Ratmann, O., Bhatt, S., Hopkins, S., Gandy, A., Rambaut, A., Ferguson, N.M., Consor, C.-19 G.U.K.C.-U., 2021. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593, 266-269.

    40. Wang, P.F., Nair, M.S., Liu, L.H., Iketani, S., Luo, Y., Guo, Y.C., Wang, M., Yu, J., Zhang, B.S., Kwong, P.D., Graham, B.S., Mascola, J.R., Chang, J.Y., Yin, M.T., Sobieszczyk, M., Kyratsous, C.A., Shapiro, L., Sheng, Z.Z., Huang, Y.X., Ho, D.D., 2021. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593, 130-135.

    41. Wang, X., Zhao, X.Y., Song, J.Y., Wu, J., Zhu, Y.Q., Li, M.H., Cui, Y.C., Chen, Y.J., Yang, L.L., Liu, J., Zhu, H.Z., Jiang, S.B., Wang, P.F., 2022. Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies. Emerg. Microb. Infect. 11, 477-481.

    42. Wang, Y.D., Ma, Y.P., Xu, Y., Liu, J.Y., Li, X., Chen, Y.Y., Chen, Y., Xie, J., Xiao, L.B., Xiang, Z., Wu, F., Huang, J.H., 2022. Resistance of SARS-CoV-2 Omicron variant to convalescent and CoronaVac vaccine plasma. Emerg. Microb. Infect. 11, 424-427.

    43. WHO, 2021. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern. (Accessed 26 November 2021).

    44. Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., Hu, Y., Tao, Z.W., Tian, J.H., Pei, Y.Y., Yuan, M.L., Zhang, Y.L., Dai, F.H., Liu, Y., Wang, Q.M., Zheng, J.J., Xu, L., Holmes, E.C., Zhang, Y.Z., 2020. Author Correction: a new coronavirus associated with human respiratory disease in China. Nature 579, 265-269.

    45. Zhang, L., Li, Q.Q., Wu, J.J., Yu, Y.L., Zhang, Y., Nie, J.H., Liang, Z.T., Cui, Z.M., Liu, S., Wang, H.X., Ding, R.X., Jiang, F., Li, T., Nie, L.L., Lu, Q., Li, J.Y., Qin, L.L., Jiang, Y.N., Shi, Y., Xu, W.B., Huang, W.J., Wang, Y.C., 2022. Analysis of SARS-CoV-2 variants B.1.617: host tropism, proteolytic activation, cell-cell fusion, and neutralization sensitivity. Emerg. Microb. Infect. 11, 1024-1036.

    46. Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F., Shi, Z.L., 2020. Addendum: a pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.

  • 加载中

Article Metrics

Article views(241) PDF downloads(1) Cited by()

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Neutralization of five SARS-CoV-2 variants of concern by convalescent and BBIBP-CorV vaccinee serum

      Corresponding author: Hongzhou Lu, luhongzhou@fudan.edu.cn
      Corresponding author: Huanzhang Zhu, hzzhu@fudan.edu.cn
    • a State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China;
    • b Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China;
    • c Fubio (Suzhou) Biomedical Technology Co., Ltd, Suzou, 215300, China;
    • d Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China;
    • e Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China;
    • f Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Shenzhen, 518112, China

    Abstract: The prevalence of SARS-CoV-2 variants of concern (VOCs) is still escalating throughout the world. However, the level of neutralization of the inactivated viral vaccine recipients’ sera and convalescent sera against all VOCs, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron) remains to be lack of comparative analysis. Therefore, we constructed pseudoviruses of five VOCs using a lentiviral-based system and analyzed their viral infectivity and neutralization resistance to convalescent and BBIBP-CorV vaccinee serum at different times. Our results show that, compared with the wild-type strain (WT), five VOC pseudoviruses showed higher infection, of which B.1.617.2 and B.1.1.529 variant pseudoviruses exhibited higher infection rates than wild-type or other VOC strains, respectively. Sera from 10 vaccinated individuals at the 1, 3 and 5-month post second dose or from 10 convalescent at 14 and 200 days after discharge retained neutralizing activity against all strains but exhibited decreased neutralization activity significantly against the five VOC variant pseudoviruses over time compared to WT. Notably, 100% (30/30) of the vaccinee serum samples showed more than a 2.5-fold reduction in neutralizing activity against B.1.1.529, and 90% (18/20) of the convalescent serum samples showed more than 2.5-fold reduction in neutralization against B.1.1.529. These findings demonstrate the reduced protection against the VOCs in vaccinated and convalescent individuals over time, indicating that it is necessary to have a booster shot and develop new vaccines capable of eliciting broad neutralization antibodies.

    Reference (46) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return