For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: Anthony T. Tan, Joey Ming Er Lim, Antonio Bertoletti. Protection from infection or disease? Re-evaluating the broad immunogenicity of inactivated SARS-CoV-2 vaccines [J].VIROLOGICA SINICA, 2022, 37(6) : 783-785.  http://dx.doi.org/10.1016/j.virs.2022.11.002

Protection from infection or disease? Re-evaluating the broad immunogenicity of inactivated SARS-CoV-2 vaccines

  • Corresponding author: Antonio Bertoletti, antonio@duke-nus.edu.sg
  • Received Date: 19 October 2022
    Accepted Date: 04 November 2022
    Available online: 07 November 2022
  • How do we measure vaccine efficacy? The strictest but also easiest parameter to determine vaccine efficacy is its ability to block infection. Indeed, if a vaccine is able to block infection, this necessarily follows that it will also prevent both disease development and viral transmission. As a consequence, antibodies, specifically neutralising antibodies, have been used as the “gold standard” correlate of protection to measure SARS-CoV-2 vaccine efficacy, given their ability to block infection. Since SARS-CoV-2 infects cells by the binding of its spike protein to the host ACE-2 receptor, a vaccine that is able to induce a large quantity of antibodies able to block the interaction between the ACE-2 receptor and spike protein should theoretically be highly efficacious. Given this “antibody-centric” method of evaluating of a vaccine, it is clear why spike mRNA vaccines have to date been regarded the most effective COVID-19 vaccine in the market.

  • 加载中
    1. Bertoletti, A., Le Bert, N., Tan, A.T., 2022. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity 55, 1764-1778.

    2. Cerqueira-Silva, T., Katikireddi, S.V., De Araujo Oliveira, V., Flores-Ortiz, R., Junior, J.B., Paixao, E.S., Robertson, C., Penna, G.O., Werneck, G.L., Barreto, M.L., Pearce, N., Sheikh, A., Barral-Netto, M., Boaventura, V.S., 2022. Vaccine effectiveness of heterologous CoronaVac plus BNT162b2 in Brazil. Nat. Med. 28, 838-843.

    3. Dan, J.M., Mateus, J., Kato, Y., Hastie, K.M., Yu, E.D., Faliti, C.E., Grifoni, A., Ramirez, S.I., Haupt, S., Frazier, A., Nakao, C., Rayaprolu, V., Rawlings, S.A., Peters, B., Krammer, F., Simon, V., Saphire, E.O., Smith, D.M., Weiskopf, D., Sette, A., Crotty, S., 2021. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371, eabf4063.

    4. Gao, Y., Cai, C., Grifoni, A., Muller, T.R., Niessl, J., Olofsson, A., Humbert, M., Hansson, L., Osterborg, A., Bergman, P., Chen, P., Olsson, A., Sandberg, J.K., Weiskopf, D., Price, D.A., Ljunggren, H.G., Karlsson, A.C., Sette, A., Aleman, S., Buggert, M., 2022. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat. Med. 28, 472-476.

    5. Heller, K.N., Gurer, C., Munz, C., 2006. Virus-specific CD4+ T cells: ready for direct attack. J. Exp. Med. 203, 805-808.

    6. Jara, A., Undurraga, E.A., Gonzalez, C., Paredes, F., Fontecilla, T., Jara, G., Pizarro, A., Acevedo, J., Leo, K., Leon, F., Sans, C., Leighton, P., Suarez, P., Garcia-Escorza, H., Araos, R., 2021. Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile. N. Engl.J. Med. 385, 875-884.

    7. Keeton, R., Tincho, M.B., Ngomti, A., Baguma, R., Benede, N., Suzuki, A., Khan, K., Cele, S., Bernstein, M., Karim, F., Madzorera, S.V., Moyo-Gwete, T., Mennen, M., Skelem, S., Adriaanse, M., Mutithu, D., Aremu, O., Stek, C., Du Bruyn, E., Van Der Mescht, M.A., De Beer, Z., De Villiers, T.R., Bodenstein, A., Van Den Berg, G., Mendes, A., Strydom, A., Venter, M., Giandhari, J., Naidoo, Y., Pillay, S., Tegally, H., Grifoni, A., Weiskopf, D., Sette, A., Wilkinson, R.J., De Oliveira, T., Bekker, L.G., Gray, G., Ueckermann, V., Rossouw, T., Boswell, M.T., Bhiman, J.N., Moore, P.L., Sigal, A., Ntusi, N.a.B., Burgers, W.A., Riou, C., 2022. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 603, 488-492.

    8. Khoo, N.K.H., Lim, J.M.E., Gill, U.S., De Alwis, R., Tan, N., Toh, J.Z.N., Abbott, J.E., Usai, C., Ooi, E.E., Low, J.G.H., Le Bert, N., Kennedy, P.T.F., Bertoletti, A., 2022. Differential immunogenicity of homologous versus heterologous boost in Ad26.COV2.S vaccine recipients. Med (N Y) 3, 104-118 e104.

    9. Le Bert, N., Tan, A.T., Kunasegaran, K., Tham, C.Y.L., Hafezi, M., Chia, A., Chng, M.H.Y., Lin, M., Tan, N., Linster, M., Chia, W.N., Chen, M.I., Wang, L.F., Ooi, E.E., Kalimuddin, S., Tambyah, P.A., Low, J.G., Tan, Y.J., Bertoletti, A., 2020. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457-462.

    10. Lim, J.M.E., Hang, S.K., Hariharaputran, S., Chia, A., Tan, N., Lee, E.S., Chng, E., Lim, P.L., Young, B.E., Lye, D.C, Le Bert, N., Bertoletti, A., Tan, A.T., 2022. A comparative characterization of SARS-CoV-2-specific T cells induced by mRNA or inactive virus COVID-19 vaccines. Cell Rep. Med. 3, 100793.

    11. Lim, W.W., Mak, L., Leung, G.M., Cowling, B.J., Peiris, M., 2021. Comparative immunogenicity of mRNA and inactivated vaccines against COVID-19. Lancet Microbe 2, e423.

    12. Liu, J., Chandrashekar, A., Sellers, D., Barrett, J., Jacob-Dolan, C., Lifton, M., Mcmahan, K., Sciacca, M., Vanwyk, H., Wu, C., Yu, J., Collier, A.Y., Barouch, D.H., 2022. Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron. Nature 603, 493-496.

    13. Liu, L., Iketani, S., Guo, Y., Chan, J.F., Wang, M., Liu, L., Luo, Y., Chu, H., Huang, Y., Nair, M.S., Yu, J., Chik, K.K., Yuen, T.T., Yoon, C., To, K.K., Chen, H., Yin, M.T., Sobieszczyk, M.E., Huang, Y., Wang, H.H., Sheng, Z., Yuen, K.Y., Ho, D.D., 2022. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676-681.

    14. Mallapaty, S., 2021. China's COVID vaccines have been crucial - now immunity is waning. Nature 598, 398-399.

    15. Mckinstry, K.K., Strutt, T.M., Kuang, Y., Brown, D.M., Sell, S., Dutton, R.W., Swain, S.L., 2012. Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. J. Clin. Invest. 122, 2847-2856.

    16. Mcmenamin, M.E., Nealon, J., Lin, Y., Wong, J.Y., Cheung, J.K., Lau, E.H.Y., Wu, P., Leung, G.M., Cowling, B.J., 2022. Vaccine effectiveness of one, two, and three doses of BNT162b2 and CoronaVac against COVID-19 in Hong Kong: a population-based observational study. Lancet Infect. Dis. 22, 1435-1443.

    17. Naranbhai, V., Nathan, A., Kaseke, C., Berrios, C., Khatri, A., Choi, S., Getz, M.A., TanoMenka, R., Ofoman, O., Gayton, A., Senjobe, F., Zhao, Z., St Denis, K.J., Lam, E.C., Carrington, M., Garcia-Beltran, W.F., Balazs, A.B., Walker, B.D., Iafrate, A.J., Gaiha, G.D., 2022. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals. Cell 185, 1041-1051 e1046.

    18. Peng, Q.L., Zhou, R.H., Wang, Y.W., Zhao, M.Q., Liu, N., Li, S., Huang, H.D., Yang, D.W., Au, K.K., Wang, H., Man, K., Yuen, K.Y., Chen, Z.W., 2022. Waning immune responses against SARS-CoV-2 variants of concern among vaccinees in Hong Kong. EBioMedicine 77, 103904.

    19. Rydyznski Moderbacher, C., Kim, C., Mateus, J., Plested, J., Zhu, M., Cloney-Clark, S., Weiskopf, D., Sette, A., Fries, L., Glenn, G., Crotty, S., 2022. NVX-CoV2373 vaccination induces functional SARS-CoV-2-specific CD4+ and CD8+ T cell responses. J. Clin. Invest. 132, e160898.

    20. Tarke, A., Coelho, C.H., Zhang, Z., Dan, J.M., Yu, E.D., Methot, N., Bloom, N.I., Goodwin, B., Phillips, E., Mallal, S., Sidney, J., Filaci, G., Weiskopf, D., Da Silva Antunes, R., Crotty, S., Grifoni, A., Sette, A., 2022. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 185, 847-859 e811.

    21. Thomas, S.J., Moreira Jr., E.D., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J.L., Perez Marc, G., Polack, F.P., Zerbini, C., Bailey, R., Swanson, K.A., Xu, X., Roychoudhury, S., Koury, K., Bouguermouh, S., Kalina, W.V., Cooper, D., Frenck Jr., R.W., Hammitt, L.L., Tureci, O., Nell, H., Schaefer, A., Unal, S., Yang, Q., Liberator, P., Tresnan, D.B., Mather, S., Dormitzer, P.R., Sahin, U., Gruber, W.C., Jansen, K.U., Group, C.C.T., 2021. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N. Engl. J. Med. 385, 1761-1773.

    22. Van Dorp, L., Houldcroft, C.J., Richard, D., Balloux, F., 2021. COVID-19, the first pandemic in the post-genomic era. Curr Opin Virol 50, 40-48.

    23. Wellford, S.A., Moseman, A.P., Dao, K., Wright, K.E., Chen, A., Plevin, J.E., Liao, T.C., Mehta, N., Moseman, E.A., 2022. Mucosal plasma cells are required to protect the upper airway and brain from infection. Immunity. https://doi.org/10.1016/j.immuni.2022.08.017.

    24. Zhang, H., Jia, Y., Ji, Y., Cong, X., Liu, Y., Yang, R., Kong, X., Shi, Y., Zhu, L., Wang, Z., Wang, W., Fei, R., Liu, F., Lu, F., Chen, H., Rao, H., 2022. Inactivated vaccines against SARS-CoV-2: neutralizing antibody titers in vaccine recipients. Front. Microbiol. 13, 816778.

    25. Zhang, Z., Mateus, J., Coelho, C.H., Dan, J.M., Moderbacher, C.R., Galvez, R.I., Cortes, F.H., Grifoni, A., Tarke, A., Chang, J., Escarrega, E.A., Kim, C., Goodwin, B., Bloom, N.I., Frazier, A., Weiskopf, D., Sette, A., Crotty, S., 2022. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 185, 2434-2451 e2417.

    26. Zhao, J., Zhao, J., Mangalam, A.K., Channappanavar, R., Fett, C., Meyerholz, D.K., Agnihothram, S., Baric, R.S., David, C.S., Perlman, S., 2016. Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity 44, 1379-1391.

  • 加载中

Article Metrics

Article views(328) PDF downloads(11) Cited by()

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Protection from infection or disease? Re-evaluating the broad immunogenicity of inactivated SARS-CoV-2 vaccines

      Corresponding author: Antonio Bertoletti, antonio@duke-nus.edu.sg
    • a Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore;
    • b Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore

    Abstract: How do we measure vaccine efficacy? The strictest but also easiest parameter to determine vaccine efficacy is its ability to block infection. Indeed, if a vaccine is able to block infection, this necessarily follows that it will also prevent both disease development and viral transmission. As a consequence, antibodies, specifically neutralising antibodies, have been used as the “gold standard” correlate of protection to measure SARS-CoV-2 vaccine efficacy, given their ability to block infection. Since SARS-CoV-2 infects cells by the binding of its spike protein to the host ACE-2 receptor, a vaccine that is able to induce a large quantity of antibodies able to block the interaction between the ACE-2 receptor and spike protein should theoretically be highly efficacious. Given this “antibody-centric” method of evaluating of a vaccine, it is clear why spike mRNA vaccines have to date been regarded the most effective COVID-19 vaccine in the market.

    Reference (26) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return