Aobaixue Zhou, Jiahao Zhang, Huanan Li, Qiang Xu, Yiqun Chen, Bo Li, Wanying Liu, Guanming Su, Xingxing Ren, Guangjie Lao, Baozheng Luo, Ming Liao and Wenbao Qi. Combined insertion of basic and non-basic amino acids at hemagglutinin cleavage site of highly pathogenic H7N9 virus promotes replication and pathogenicity in chickens and mice[J]. Virologica Sinica, 2022, 37(1): 38-47. doi: 10.1016/j.virs.2022.01.001
Citation: Aobaixue Zhou, Jiahao Zhang, Huanan Li, Qiang Xu, Yiqun Chen, Bo Li, Wanying Liu, Guanming Su, Xingxing Ren, Guangjie Lao, Baozheng Luo, Ming Liao, Wenbao Qi. Combined insertion of basic and non-basic amino acids at hemagglutinin cleavage site of highly pathogenic H7N9 virus promotes replication and pathogenicity in chickens and mice .VIROLOGICA SINICA, 2022, 37(1) : 38-47.  http://dx.doi.org/10.1016/j.virs.2022.01.001

高致病性H7N9禽流感病毒的裂解位点处碱性氨基酸和非碱性氨基酸的联合插入促进鸡和小鼠的致病性

  • 自2016年中旬以来,低致病性H7N9流感病毒在我国演变为高致病性H7N9流感病毒,对家禽产业和公共卫生构成了极大的威胁。在高致病性H7N9流感病毒流行的早期,其裂解位点主要插入“KRTA”基序。随着H7N9流感病毒的传播,禽源和人源高致病性H7N9流感病毒的裂解位点更具有多态性,表现出碱性和非碱性氨基酸插入和氨基酸的替换,但这些插入和替换的潜在功能仍不清楚。在这里,我们通过反向遗传技术拯救出6株携带PEIPKGR/G、PEVPKGR/G、PEVPKRKRTAR/G、PEVPKGKRTAR/G、PEVPKGKRIAR/G和PEVPKRKRR/G基序的H7N9流感病毒。我们的研究结果表明,PEVPKRKRTAR/G基序的氨基酸插入在我国流行的高致病性H7N9病毒中占主导地位。有趣的是,删除H7N9病毒裂解位点的苏氨酸和丙氨酸后,H7N9病毒显著降低了热稳定性并且降低小鼠致病性。含有PEVPKRKRTAR/G基序的病毒在鸡上能够增强致病性,但是与其他高致病性H7N9病毒相比,其在鸡上的传播能力有所降低。以上结论解释了为何含有PEVPKRKRTAR/G基序的H7N9病毒在我国能够持续流行。与此相反,携带异亮氨酸和丙氨酸的H7N9病毒可降低鸡的传播率和小鼠的毒力。值得注意的是,H7N9病毒的HA蛋白的I335V氨基酸突变能够显著增强鸡的致病性和传播能力,表明H7N9的碱性氨基酸和非碱性氨基酸的联合插入以及裂解位点处I335V的替换促进了鸡和小鼠的复制能力和致病性。随着H7N9病毒的不断进化,其对家禽养殖业和人类健康的威胁越来越大,因此需要加强H7N9病毒的全面监测和预防。

Combined insertion of basic and non-basic amino acids at hemagglutinin cleavage site of highly pathogenic H7N9 virus promotes replication and pathogenicity in chickens and mice

  • Since mid-2016, the low pathogenic H7N9 influenza virus has evolved into a highly pathogenic (HP) phenotype in China, raising many concerns about public health and poultry industry. The insertion of a “KRTA” motif at hemagglutinin cleavage site (HACS) occurred in the early stage of HP H7N9 variants. During the co-circulation, the HACS of HP-H7N9 variants were more polymorphic in birds and humans. Although HP-H7N9 variants, unlike the H5 subtype virus, exhibited the insertions of basic and non-basic amino acids, the underlying function of those insertions and substitutions remains unclear. The results of bioinformatics analysis indicated that the PEVPKRKRTAR/G motif of HACS had become the dominant motif in China. Then, we generated six H7N9 viruses bearing the PEIPKGR/G, PEVPKGR/G, PEVPKRKRTAR/G, PEVPKGKRTAR/G, PEVPKGKRIAR/G, and PEVPKRKRR/G motifs. Interestingly, after the deletion of threonine and alanine (TA) at HACS, the H7N9 viruses manifested decreased thermostability and virulence in mice, and the PEVPKRKRTAR/G-motif virus is prevalent in birds and humans probably due to its increased transmissibility and moderate virulence. By contrast, the insertion of non-basic amino acid isoleucine and alanine (IA) decreased the transmissibility in chickens and virulence in mice. Remarkably, the I335V substitution of H7N9 virus enhanced infectivity and transmission in chickens, suggesting that the combination of mutations and insertions of amino acids at the HACS promoted replication and pathogenicity in chickens and mice. The ongoing evolution of H7N9 increasingly threatens public health and poultry industry, so, its comprehensive surveillance and prevention of H7N9 viruses should be pursued.

  • 加载中
    1. Abdelwhab EM, Veits J, Ulrich R, Kasbohm E, Teifke JP, Mettenleiter TC. Composition of the Hemagglutinin Polybasic Proteolytic Cleavage Motif Mediates Variable Virulence of H7N7 Avian Influenza Viruses. Sci Rep. 2016;6:39505.

    2. Bao L, Bi Y, Wong G, Qi W, Li F, Lv Q, Wang L, Liu F, Yang Y, Zhang C, Liu WJ, Quan C, Jia W, Liu Y, Liu W, Liao M, Gao GF, Qin C. Diverse biological characteristics and varied virulence of H7N9 from Wave 5. Emerg Microbes Infect 2019;8:94-102.

    3. Bullough PA, Hughson FM, Skehel JJ, Wiley DC. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 1994;371:37-43.

    4. Carr CM, Chaudhry C, Kim PS. Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci U S A. 1997;94:14306-14313.

    5. Cotter CR, Jin H, Chen Z. A single amino acid in the stalk region of the H1N1pdm influenza virus HA protein affects viral fusion, stability and infectivity. PLoS Pathog. 2014;10:e1003831.

    6. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, and Webster RG. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A. 2000;97:6108-6113.

    7. Horimoto T, Kawaoka Y. Biologic effects of introducing additional basic amino acid residues into the hemagglutinin cleavage site of a virulent avian influenza virus. Virus Res. 1997;50:35-40.

    8. Imai M, Watanabe T, Kiso M, Nakajima N, Yamayoshi S, Iwatsuki-Horimoto K, Hatta M, Yamada S, Ito M, Sakai-Tagawa Y, Shirakura M, Takashita E, Fujisaki S, McBride R, Thompson AJ, Takahashi K, Maemura T, Mitake H, Chiba S, Zhong G, Fan S, Oishi K, Yasuhara A, Takada K, Nakao T, Fukuyama S, Yamashita M, Lopes TJS, Neumann G, Odagiri T, Watanabe S, Shu Y, Paulson JC, Hasegawa H, Kawaoka Y. A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets. Cell Host Microbe. 2017;22:615-626.

    9. Ito T, Goto H, Yamamoto E, Tanaka H, Takeuchi M, Kuwayama M, Kawaoka Y, Otsuki K. Generation of a highly pathogenic avian influenza A virus from an avirulent field isolate by passaging in chickens. J Virol. 2001;75:4439-4443.

    10. Jiang H, Wu P, Uyeki TM, He J, Deng Z, Xu W, Lv Q, Zhang J, Wu Y, Tsang TK, Kang M, Zheng J, Wang L, Yang B, Qin Y, Feng L, Fang VJ, Gao GF, Leung GM, Yu H, Cowling BJ. Preliminary Epidemiologic Assessment of Human Infections With Highly Pathogenic Avian Influenza A(H5N6) Virus, China. Clin Infect Dis. 2017;65:383-388.

    11. Khatchikian D, Orlich M, Rott R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature. 1989;340:156-157.

    12. Lee CW, Lee YJ, Senne DA, Suarez DL. Pathogenic potential of North American H7N2 avian influenza virus: a mutagenesis study using reverse genetics. Virology. 2006;353:388-395.

    13. Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, Bi Y, Wu Y, Li X, Yan J, Liu W, Zhao G, Yang W, Wang Y, Ma J, Shu Y, Lei F, Gao GF. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet. 2013;381:1926-1932.

    14. Liu D, Zhang Z, He L, Gao Z, Li J, Gu M, Hu J, Wang X, Liu X, Liu X. Characteristics of the emerging chicken-origin highly pathogenic H7N9 viruses: A new threat to public health and poultry industry. J Infect. 2018;76:217-220.

    15. Orlich M, Gottwald H, Rott R. Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology. 1994;204:462-465.

    16. Qi W, Jia W, Liu D, Li J, Bi Y, Xie S, Li B, Hu T, Du Y, Xing L, Zhang J, Zhang F, Wei X, Eden JS, Li H, Tian H, Li W, Su G, Lao G, Xu C, Xu B, Liu W, Zhang G, Ren T, Holmes EC, Cui J, Shi W, Gao GF, Liao M. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor. J Virol. 2018;92:e00921-17.

    17. Quan C, Shi W, Yang Y, Yang Y, Liu X, Xu W, Li H, Li J, Wang Q, Tong Z, Wong G, Zhang C, Ma S, Ma Z, Fu G, Zhang Z, Huang Y, Song H, Yang L, Liu WJ, Liu Y, Liu W, Gao GF, Bi Y. New Threats from H7N9 Influenza Virus: Spread and Evolution of High- and Low-Pathogenicity Variants with High Genomic Diversity in Wave Five. J Virol. 2018;92:e00301-e00318.

    18. Rott R. The pathogenic determinant of influenza virus. Vet Microbiol. 1992;33:303-310.

    19. Russell CJ, Hu M, Okda FA. Influenza Hemagglutinin Protein Stability, Activation, and Pandemic Risk. Trends Microbiol. 2018;26:841-853.

    20. Scholtissek C. Stability of infectious influenza A viruses at low pH and at elevated temperature. Vaccine. 1985;3:215 -218.

    21. Seekings AH, Howard WA, Nunez A, Slomka MJ, Banyard AC, Hicks D, Ellis RJ, Nunez-Garcia J, Hartgroves LC, Barclay WS, Banks J, Brown IH. The Emergence of H7N7 Highly Pathogenic Avian Influenza Virus from Low Pathogenicity Avian Influenza Virus Using an in ovo Embryo Culture Model. Viruses. 2020;12:920.

    22. Shi J, Deng G, Kong H, Gu C, Ma S, Yin X, Zeng X, Cui P, Chen Y, Yang H, Wan X, Wang X, Liu L, Chen P, Jiang Y, Liu J, Guan Y, Suzuki Y, Li M, Qu Z, Guan L, Zang J, Gu W, Han S, Song Y, Hu Y, Wang Z, Gu L, Yang W, Liang L, Bao H, Tian G, Li Y, Qiao C, Jiang L, Li C, Bu Z, Chen H. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res. 2017;27:1409-1421.

    23. Shi J, Deng G, Ma S, Zeng X, Yin X, Li M, Zhang B, Cui P, Chen Y, Yang H, Wan X, Liu L, Chen P, Jiang Y, Guan Y, Liu J, Gu W, Han S, Song Y, Liang L, Qu Z, Hou Y, Wang X, Bao H, Tian G, Li Y, Jiang L, Li C, Chen H. Rapid Evolution of H7N9 Highly Pathogenic Viruses that Emerged in China in 2017. Cell Host Microbe. 2018;24:558-568.

    24. Suarez DL, Senne DA, Banks J, Brown IH, Essen SC, Lee CW, Manvell RJ, Mathieu-Benson C, Moreno V, Pedersen JC, Panigrahy B, Rojas H, Spackman E, Alexander DJ. Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis. 2004;10:693-699.

    25. Sun X, Belser JA, Yang H, Pulit-Penaloza JA, Pappas C, Brock N, Zeng H, Creager HM, Stevens J, Maines TR. Identification of key hemagglutinin residues responsible for cleavage, acid stability, and virulence of fifth-wave highly pathogenic avian influenza A(H7N9) viruses. Virology. 2019;535:232-240.

    26. Wang X, Jiang H, Wu P, Uyeki TM, Feng L, Lai S, Wang L, Huo X, Xu K, Chen E, Wang X, He J, Kang M, Zhang R, Zhang J, Wu J, Hu S, Zhang H, Liu X, Fu W, Ou J, Wu S, Qin Y, Zhang Z, Shi Y, Zhang J, Artois J, Fang VJ, Zhu H, Guan Y, Gilbert M, Horby PW, Leung GM, Gao GF, Cowling BJ, Yu H. Epidemiology of avian influenza A H7N9 virus in human beings across five epidemics in mainland China, 2013-17: an epidemiological study of laboratory-confirmed case series. Lancet Infect Dis. 2017;17:822-832.

    27. Webster RG, Rott R. Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell. 1987;50:665-666.

    28. Yang W, Yin X, Guan L, Li M, Ma S, Shi J, Deng G, Suzuki Y, Chen H. A live attenuated vaccine prevents replication and transmission of H7N9 highly pathogenic influenza viruses in mammals. Emerg Microbes Infect. 2018;7:153.

    29. Zhang F, Bi Y, Wang J, Wong G, Shi W, Hu F, Yang Y, Yang L, Deng X, Jiang S, He X, Liu Y, Yin C, Zhong N, Gao GF. Human infections with recently-emerging highly pathogenic H7N9 avian influenza virus in China. J Infect. 2017;75:71-75.

    30. Zhang J, Ye H, Li H, Ma K, Qiu W, Chen Y, Qiu Z, Li B, Jia W, Liang Z, Liao M, Qi W. Evolution and Antigenic Drift of Influenza A (H7N9) Viruses, China, 2017-2019. Emerg Infect Dis. 2020;26:1906 -1911.

    31. Zhang Y, Sun Y, Sun H, Pu J, Bi Y, Shi Y, Lu X, Li J, Zhu Q, Gao GF, Yang H, Liu J. A single amino acid at the hemagglutinin cleavage site contributes to the pathogenicity and neurovirulence of H5N1 influenza virus in mice. J Virol. 2012;86:6924-6931.

    32. Zhu W, Dong J, Zhang Y, Yang L, Li X, Chen T, Zhao X, Wei H, Bo H, Zeng X, Huang W, Li Z, Tang J, Zhou J, Gao R, Xin L, Yang J, Zou S, Chen W, Liu J, Shu Y, Wang D. A Gene Constellation in Avian Influenza A (H7N9) Viruses May Have Facilitated the Fifth Wave Outbreak in China. Cell Rep. 2018;23:909 -917

  • 加载中
  • 10.1016j.virs.2022.01.001-ESM.docx

Article Metrics

Article views(5643) PDF downloads(61) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Combined insertion of basic and non-basic amino acids at hemagglutinin cleavage site of highly pathogenic H7N9 virus promotes replication and pathogenicity in chickens and mice

      Corresponding author: Ming Liao, mliao@scau.edu.cn
      Corresponding author: Wenbao Qi, qiwenbao@scau.edu.cn
    • a College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China

    Abstract: Since mid-2016, the low pathogenic H7N9 influenza virus has evolved into a highly pathogenic (HP) phenotype in China, raising many concerns about public health and poultry industry. The insertion of a “KRTA” motif at hemagglutinin cleavage site (HACS) occurred in the early stage of HP H7N9 variants. During the co-circulation, the HACS of HP-H7N9 variants were more polymorphic in birds and humans. Although HP-H7N9 variants, unlike the H5 subtype virus, exhibited the insertions of basic and non-basic amino acids, the underlying function of those insertions and substitutions remains unclear. The results of bioinformatics analysis indicated that the PEVPKRKRTAR/G motif of HACS had become the dominant motif in China. Then, we generated six H7N9 viruses bearing the PEIPKGR/G, PEVPKGR/G, PEVPKRKRTAR/G, PEVPKGKRTAR/G, PEVPKGKRIAR/G, and PEVPKRKRR/G motifs. Interestingly, after the deletion of threonine and alanine (TA) at HACS, the H7N9 viruses manifested decreased thermostability and virulence in mice, and the PEVPKRKRTAR/G-motif virus is prevalent in birds and humans probably due to its increased transmissibility and moderate virulence. By contrast, the insertion of non-basic amino acid isoleucine and alanine (IA) decreased the transmissibility in chickens and virulence in mice. Remarkably, the I335V substitution of H7N9 virus enhanced infectivity and transmission in chickens, suggesting that the combination of mutations and insertions of amino acids at the HACS promoted replication and pathogenicity in chickens and mice. The ongoing evolution of H7N9 increasingly threatens public health and poultry industry, so, its comprehensive surveillance and prevention of H7N9 viruses should be pursued.

    Reference (32) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return