. doi: 10.1016/j.virs.2023.11.004
Citation: Liping Ma, Huabin Zheng, Xianliang Ke, Rui Gui, Zhongzi Yao, Jiasong Xiong, Quanjiao Chen. Mutual antagonism of mouse-adaptation mutations in HA and PA proteins on H9N2 virus replication .VIROLOGICA SINICA, 2024, 39(1) : 56-70.  http://dx.doi.org/10.1016/j.virs.2023.11.004

H9N2的HA和PA蛋白中的小鼠适应性突变对病毒复制起相互拮抗作用

  • 通讯作者: 陈全姣, chenqj@wh.iov.cn
  • 收稿日期: 2023-07-14
    录用日期: 2023-11-10
  • A型流感病毒(influenza A)中,禽源H9N2病毒具有广泛的宿主范围。然而,我们对H9N2病毒在哺乳动物中的适应基础的了解有限。为了揭示禽源H9N2适应哺乳动物的分子基础,我们在小鼠中对一株禽源A/Chicken/Hunan/8.27 YYGK3W3-OC/2018(H9N2)(3W3)毒株进行了肺部连续传代,在HA和PA蛋白中共鉴定到6个氨基酸突变位点。体内实验结果表明,HA-L226Q、T511I和A528V(H3 numbering)突变可增强病毒对小鼠的致病性和增加病毒在小鼠肺部的复制,其中,HA-L226Q是关键决定因素。PA突变(PA-T97I、I545V及S594G)可增强病毒在哺乳动物细胞中的聚合酶活性、增加病毒在体外和体内的复制水平。PA-T97I通过促进病毒聚合酶复合物组装以促进病毒聚合酶活性。我们的研究结果显示,PA-97I和/或PA-545V与3个HA点突变拮抗并影响病毒复制。此外,当2个和3个PA点突变与HA-226Q结合时,表现出对病毒复制的拮抗作用。值得注意的是,PA突变与双点HA突变的任何组合都会拮抗病毒复制。我们还观察到PA-545V和PA-97I组合、以及HA-528V和PA-545V组合分别对病毒复制有拮抗作用。我们的结果表明,HA和PA蛋白中的几种拮抗突变组合可影响病毒复制。这些相互拮抗的突变可能有助于H9N2病毒适应小鼠和哺乳动物细胞。这些发现对理解禽源H9N2适应哺乳动物分子基础和评估其在哺乳动物中的危害提供了新的数据支撑。

Mutual antagonism of mouse-adaptation mutations in HA and PA proteins on H9N2 virus replication

  • Corresponding author: Quanjiao Chen, chenqj@wh.iov.cn
  • Received Date: 14 July 2023
    Accepted Date: 10 November 2023
  • Avian H9N2 viruses have wide host range among the influenza A viruses. However, knowledge of H9N2 mammalian adaptation is limited. To explore the molecular basis of the adaptation to mammals, we performed serial lung passaging of the H9N2 strain A/chicken/Hunan/8.27 YYGK3W3-OC/2018 (3W3) in mice and identified six mutations in the hemagglutinin (HA) and polymerase acidic (PA) proteins. Mutations L226Q, T511I, and A528V of HA were responsible for enhanced pathogenicity and viral replication in mice; notably, HA-L226Q was the key determinant. Mutations T97I, I545V, and S594G of PA contributed to enhanced polymerase activity in mammalian cells and increased viral replication levels in vitro and in vivo. PA-T97I increased viral polymerase activity by accelerating the viral polymerase complex assembly. Our findings revealed that the viral replication was affected by the presence of PA-97I and/or PA-545V in combination with a triple-point HA mutation. Furthermore, the double- and triple-point PA mutations demonstrated antagonistic effect on viral replication when combined with HA-226Q. Notably, any combination of PA mutations, along with double-point HA mutations, resulted in antagonistic effect on viral replication. We also observed antagonism in viral replication between PA-545V and PA-97I, as well as between HA-528V and PA-545V. Our findings demonstrated that several antagonistic mutations in HA and PA proteins affect viral replication, which may contribute to the H9N2 virus adaptation to mice and mammalian cells. These findings can potentially contribute to the monitoring of H9N2 field strains for assessing their potential risk in mammals.

  • 加载中
    1. Ali, M., Yaqub, T., Mukhtar, N., Imran, M., Ghafoor, A., Shahid, M.F., Naeem, S.M., Iqbal, M., Smith, G.J.D.,Su, Y.C.F., 2019. Avian influenza A(H9N2) virus in poultry worker, Pakistan, 2015. Emerg. Infect. Dis. 25, 136-139.

    2. Almayahi, Z.K., Al Kindi, H., Davies, C.T., Al-Rawahi, B., Al-Jardani, A., Al-Yaqoubi, F., Jang, Y., Jones, J., Barnes, J.R., Davis, W., Bo, S., Lynch, B., Wentworth, D.E., Al-Maskari, Z., Maani, A.A.,Al-Abri, S., 2020. First report of human infection with avian influenza A(H9N2) virus in Oman: the need for a One Health approach. Int. J. Infect. Dis., 91, 169-173.

    3. An, S.H., Hong, S.M., Song, J.H., Son, S.E., Lee, C.Y., Choi, K.S.,Kwon, H.J., 2023. Engineering an optimal Y280-lineage H9N2 vaccine strain by tuning PB2 activity. Int. J. Mol. Sci., 24, 8840.

    4. Bi, Y., Chen, Q., Wang, Q., Chen, J., Jin, T., Wong, G., Quan, C., Liu, J., Wu, J., Yin, R., Zhao, L., Li, M., Ding, Z., Zou, R., Xu, W., Li, H., Wang, H., Tian, K., Fu, G., Huang, Y., Shestopalov, A., Li, S., Xu, B., Yu, H., Luo, T., Lu, L., Xu, X., Luo, Y., Liu, Y., Shi, W., Liu, D.,Gao, G.F., 2016. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe, 20, 810-821.

    5. Bi, Y., Li, J., Li, S., Fu, G., Jin, T., Zhang, C., Yang, Y., Ma, Z., Tian, W., Li, J., Xiao, S., Li, L., Yin, R., Zhang, Y., Wang, L., Qin, Y., Yao, Z., Meng, F., Hu, D., Li, D., Wong, G., Liu, F., Lv, N., Wang, L., Fu, L., Yang, Y., Peng, Y., Ma, J., Sharshov, K., Shestopalov, A., Gulyaeva, M., Gao, G.F., Chen, J., Shi, Y., Liu, W.J., Chu, D., Huang, Y., Liu, Y., Liu, L., Liu, W., Chen, Q.,Shi, W., 2020. Dominant subtype switch in avian influenza viruses during 2016-2019 in China. Nat. Commun., 11, 5909.

    6. Bi, Y., Zhang, Z., Liu, W., Yin, Y., Hong, J., Li, X., Wang, H., Wong, G., Chen, J., Li, Y., Ru, W., Gao, R., Liu, D., Liu, Y., Zhou, B., Gao, G.F., Shi, W.,Lei, F., 2015. Highly pathogenic avian influenza A(H5N1) virus struck migratory birds in China in 2015. Sci. Rep., 5, 12986.

    7. Brown, E.G., Liu, H., Kit, L.C., Baird, S.,Nesrallah, M., 2001. Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: identification of functional themes. Proc. Natl. Acad. Sci. U. S. A., 98, 6883-6888.

    8. Butt, K.M., Smith, G.J., Chen, H., Zhang, L.J., Leung, Y.H., Xu, K.M., Lim, W., Webster, R.G., Yuen, K.Y., Peiris, J.S.,Guan, Y., 2005. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J. Clin. Microbiol., 43, 5760-5767.

    9. Chang, P., Sadeyen, J.R., Bhat, S., Daines, R., Hussain, A., Yilmaz, H.,Iqbal, M., 2023. Risk assessment of the newly emerged H7N9 avian influenza viruses. Emerg. Microbes Infect., 10.1080/22221751.2023.2172965, 2172965.

    10. Chauhan, R.P.,Gordon, M.L., 2022. An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes, 58, 255-269.

    11. Chen, H., Yuan, H., Gao, R., Zhang, J., Wang, D., Xiong, Y., Fan, G., Yang, F., Li, X., Zhou, J., Zou, S., Yang, L., Chen, T., Dong, L., Bo, H., Zhao, X., Zhang, Y., Lan, Y., Bai, T., Dong, J., Li, Q., Wang, S., Zhang, Y., Li, H., Gong, T., Shi, Y., Ni, X., Li, J., Zhou, J., Fan, J., Wu, J., Zhou, X., Hu, M., Wan, J., Yang, W., Li, D., Wu, G., Feng, Z., Gao, G.F., Wang, Y., Jin, Q., Liu, M.,Shu, Y., 2014. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet, 383, 714-721.

    12. Cheng, K., Yu, Z., Chai, H., Sun, W., Xin, Y., Zhang, Q., Huang, J., Zhang, K., Li, X., Yang, S., Wang, T., Zheng, X., Wang, H., Qin, C., Qian, J., Chen, H., Hua, Y., Gao, Y.,Xia, X., 2014. PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology, 468-470, 207-213.

    13. Connor, R.J., Kawaoka, Y., Webster, R.G.,Paulson, J.C., 1994. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology, 205, 17-23.

    14. Dias, A., Bouvier, D., Crepin, T., Mccarthy, A.A., Hart, D.J., Baudin, F., Cusack, S.,Ruigrok, R.W., 2009. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature, 458, 914-918.

    15. Gao, X., Wang, N., Chen, Y., Gu, X., Huang, Y., Liu, Y., Jiang, F., Bai, J., Qi, L., Xin, S., Shi, Y., Wang, C.,Liu, Y., 2021. Sequence characteristics and phylogenetic analysis of H9N2 subtype avian influenza A viruses detected from poultry and the environment in China, 2018. PeerJ, 9, e12512.

    16. Gomaa, M.R., El Rifay, A.S., Abu Zeid, D., Elabd, M.A., Elabd, E., Kandeil, A., Shama, N.M.A., Kamel, M.N., Marouf, M.A., Barakat, A., Refaey, S., Naguib, A., Mckenzie, P.P., Webby, R.J., Ali, M.A.,Kayali, G., 2020. Incidence and seroprevalence of avian influenza in a cohort of backyard poultry growers, Egypt, August 2015-March 2019. Emerg. Infect. Dis., 26, 2129-2136.

    17. Guan, Y., Shortridge, K.F., Krauss, S.,Webster, R.G., 1999. Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc. Natl. Acad. Sci. U. S. A., 96, 9363-9367.

    18. Guo, Q., Zou, L., Yu, J., Song, Y., Liang, L., Zhuang, X., Song, T.,Wu, J., 2020. First human infection with avian influenza H9N2 - Guangdong Province, China, 2020. China CDC Wkly., 2, 545-548.

    19. Hara, K., Schmidt, F.I., Crow, M.,Brownlee, G.G., 2006. Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J. Virol., 80, 7789-7798.

    20. He, X.J., Zhou, J., Bartlam, M., Zhang, R.G., Ma, J.Y., Lou, Z.Y., Li, X.M., Li, J.J., Joachimiak, A., Zeng, Z.H., Ge, R.W., Rao, Z.H.,Liu, Y.F., 2008. Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus. Nature, 454, 1123-U1151.

    21. Hemerka, J.N., Wang, D., Weng, Y.J., Lu, W.X., Kaushik, R.S., Jin, J., Harmon, A.F.,Li, F., 2009. Detection and characterization of influenza A virus PA-PB2 interaction through a bimolecular fluorescence complementation assay. J. Virol., 83, 3944-3955.

    22. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G.,Webster, R.G., 2000. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. U. S. A., 97, 6108-6113.

    23. Homme, P.J.,Easterday, B.C., 1970. Avian influenza virus infections. I. Characteristics of influenza A-Turkey-Wisconsin-1966 virus. Avian Dis., 14, 66-74.

    24. Hu, Z, Peng, F, Xiong, Z, Zhang, W, Li, T, Shi, Y, Xie, J, Jin, X, Huang, J, Xiao, H, Bi, D, Song, N, Li, Z, 2021. Genetic and Molecular Characterization of H9N2 Avian Influenza Viruses Isolated from Live Poultry Markets in Hubei Province, Central China, 2013-2017. Virol Sin 36, 291–299.

    25. Huang, Y., Li, X., Zhang, H., Chen, B., Jiang, Y., Yang, L., Zhu, W., Hu, S., Zhou, S., Tang, Y., Xiang, X., Li, F., Li, W.,Gao, L., 2015. Human infection with an avian influenza A (H9N2) virus in the middle region of China. J. Med. Virol., 87, 1641-1648.

    26. Huarte, M., Sanz-Ezquerro, J.J., Roncal, F., Ortin, J.,Nieto, A., 2001. PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators. J. Virol., 75, 8597-8604.

    27. Jallow, M.M., Fall, A., Barry, M.A., Diop, B., Sy, S., Goudiaby, D., Fall, M., Enouf, V., Niang, M.N.,Dia, N., 2020. Genetic characterization of the first detected human case of low pathogenic avian influenza A/H9N2 in sub-Saharan Africa, Senegal. Emerg. Microbes Infect., 9, 1092-1095.

    28. Kampmann, M.L., Fordyce, S.L., Avila-Arcos, M.C., Rasmussen, M., Willerslev, E., Nielsen, L.P.,Gilbert, M.T., 2011. A simple method for the parallel deep sequencing of full influenza A genomes. J. Virol. Methods, 178, 243-248.

    29. Lam, T.T., Wang, J., Shen, Y., Zhou, B., Duan, L., Cheung, C.L., Ma, C., Lycett, S.J., Leung, C.Y., Chen, X., Li, L., Hong, W., Chai, Y., Zhou, L., Liang, H., Ou, Z., Liu, Y., Farooqui, A., Kelvin, D.J., Poon, L.L., Smith, D.K., Pybus, O.G., Leung, G.M., Shu, Y., Webster, R.G., Webby, R.J., Peiris, J.S., Rambaut, A., Zhu, H.,Guan, Y., 2013. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature, 502, 241-244.

    30. Li, C., Wang, S.G., Bing, G.X., Carter, R.A., Wang, Z.J., Wang, J.L., Wang, C.X., Wang, L., Wu, G., Webster, R.G., Wang, Y.Q., Sun, H.L., Sun, Y.P., Liu, J.H.,Pu, J., 2017. Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013. Emerg. Microbes Infect., 6, e106.

    31. Li, X., Tian, B., Jianfang, Z., Yongkun, C., Xiaodan, L., Wenfei, Z., Yan, L., Jing, T., Junfeng, G., Tao, C., Rongbao, G., Dayan, W.,Shu, Y., 2017. A comprehensive retrospective study of the seroprevalence of H9N2 avian influenza viruses in occupationally exposed populations in China. PLoS One, 12, e0178328.

    32. Lin, Y.P., Shaw, M., Gregory, V., Cameron, K., Lim, W., Klimov, A., Subbarao, K., Guan, Y., Krauss, S., Shortridge, K., Webster, R., Cox, N.,Hay, A., 2000. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc. Natl. Acad. Sci. U. S. A., 97, 9654-9658.

    33. Liu, D., Shi, W.F., Shi, Y., Wang, D.Y., Xiao, H.X., Li, W., Bi, Y.H., Wu, Y., Li, X.B., Yan, J.H., Liu, W.J., Zhao, G.P., Yang, W.Z., Wang, Y., Ma, J.C., Shu, Y.L., Lei, F.M.,Gao, G.F., 2013. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet, 381, 1926-1932.

    34. Liu, K, Guo, Y, Zheng, H, Ji, Z, Cai, M, Gao, R, Zhang, P, Liu, X, Xu, X, Wang, X, Liu, X, 2023. Enhanced pathogenicity and transmissibility of H9N2 avian influenza virus in mammals by hemagglutinin mutations combined with PB2-627K. Virol Sin 38, 47–55.

    35. Liu, H.Q., Liu, X.F., Cheng, J., Peng, D.X., Jia, L.J.,Huang, Y., 2003. Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996-2001. Avian Dis., 47, 116-127.

    36. Ma, M.J., Zhao, T., Chen, S.H., Xia, X., Yang, X.X., Wang, G.L., Fang, L.Q., Ma, G.Y., Wu, M.N., Qian, Y.H., Dean, N.E., Yang, Y., Lu, B.,Cao, W.C., 2018. Avian influenza A virus infection among workers at live poultry markets, China, 2013-2016. Emerg. Infect. Dis., 24, 1246-1256.

    37. Matrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M.R., Donatelli, I.,Kawaoka, Y., 2000. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J. Virol., 74, 8502-8512.

    38. Matrosovich, M.N., Krauss, S.,Webster, R.G., 2001. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology, 281, 156-162.

    39. Nagata, K., Takeuchi, K.,Ishihama, A., 1989. In vitro synthesis of influenza viral RNA: biochemical complementation assay of factors required for influenza virus replication. J. Biochem., 106, 205-208.

    40. Obayashi, E., Yoshida, H., Kawai, F., Shibayama, N., Kawaguchi, A., Nagata, K., Tame, J.R.H.,Park, S.Y., 2008. The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature, 454, 1127-U1157.

    41. Ohtsu, Y., Honda, Y., Sakata, Y., Kato, H.,Toyoda, T., 2002. Fine mapping of the subunit binding sites of influenza virus RNA polymerase. Microbiol. Immunol., 46, 167-175.

    42. Pan, Y., Cui, S., Sun, Y., Zhang, X., Ma, C., Shi, W., Peng, X., Lu, G., Zhang, D., Liu, Y., Wu, S., Yang, P.,Wang, Q., 2018. Human infection with H9N2 avian influenza in northern China. Clin. Microbiol. Infect., 24, 321-323.

    43. Peiris, M., Yuen, K.Y., Leung, C.W., Chan, K.H., Ip, P.L., Lai, R.W., Orr, W.K.,Shortridge, K.F., 1999. Human infection with influenza H9N2. Lancet, 354, 916-917.

    44. Ping, J., Keleta, L., Forbes, N.E., Dankar, S., Stecho, W., Tyler, S., Zhou, Y., Babiuk, L., Weingartl, H., Halpin, R.A., Boyne, A., Bera, J., Hostetler, J., Fedorova, N.B., Proudfoot, K., Katzel, D.A., Stockwell, T.B., Ghedin, E., Spiro, D.J.,Brown, E.G., 2011. Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse. PLoS One, 6, e21740.

    45. Potdar, V., Hinge, D., Satav, A., Simoes, E.F., Yadav, P.D.,Chadha, M.S., 2019. Laboratory-confirmed avian influenza A(H9N2) virus infection, India, 2019. Emerg. Infect. Dis., 25, 2328-2330.

    46. Rogers, G.N.,Paulson, J.C., 1983. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology, 127, 361-373.

    47. Sakabe, S., Ozawa, M., Takano, R., Iwastuki-Horimoto, K.,Kawaoka, Y., 2011. Mutations in PA, NP, and HA of a pandemic (H1N1) 2009 influenza virus contribute to its adaptation to mice. Virus Res., 158, 124-129.

    48. Shanmuganatham, K., Feeroz, M.M., Jones-Engel, L., Smith, G.J.D., Fourment, M., Walker, D., Mcclenaghan, L., Alam, S.M.R., Hasan, M.K., Seiler, P., Franks, J., Danner, A., Barman, S., Mckenzie, P., Krauss, S., Webby, R.J.,Webster, R.G., 2013. Antigenic and molecular characterization of avian influenza A(H9N2) viruses, Bangladesh. Emerg. Infect. Dis., 19, 1393-1402.

    49. Shen, Y.Y., Ke, C.W., Li, Q., Yuan, R.Y., Xiang, D., Jia, W.X., Yu, Y.D., Liu, L., Huang, C., Qi, W.B., Sikkema, R., Wu, J., Koopmans, M.,Liao, M., 2016. Novel reassortant avian influenza A(H5N6) viruses in humans, Guangdong, China, 2015. Emerg. Infect. Dis., 22, 1507-1509.

    50. Shimizu, K., Handa, H., Nakada, S.,Nagata, K., 1994. Regulation of influenza virus RNA polymerase activity by cellular and viral factors. Nucleic Acids Res., 22, 5047-5053.

    51. Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N.,Kawaoka, Y., 2006. Avian flu: influenza virus receptors in the human airway. Nature, 440, 435-436.

    52. Song, M.S., Pascua, P.N., Lee, J.H., Baek, Y.H., Lee, O.J., Kim, C.J., Kim, H., Webby, R.J., Webster, R.G.,Choi, Y.K., 2009. The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J. Virol., 83, 12325-12335.

    53. Song, W.J.,Qin, K., 2020. Human-infecting influenza A (H9N2) virus: a forgotten potential pandemic strain? Zoonoses Public Health, 67, 203-212.

    54. Swieton, E., Jozwiak, M., Minta, Z.,Smietanka, K., 2018. Genetic characterization of H9N2 avian influenza viruses isolated from poultry in Poland during 2013/2014. Virus Genes, 54, 67-76.

    55. Um, S., Siegers, J.Y., Sar, B., Chin, S., Patel, S., Bunnary, S., Hak, M., Sor, S., Sokhen, O., Heng, S., Chau, D., Sothyra, T., Khalakdina, A., Mott, J.A., Olsen, S.J., Claes, F., Sovann, L.,Karlsson, E.A., 2021. Human infection with avian influenza A(H9N2) virus, Cambodia, February 2021. Emerg. Infect. Dis., 27, 2742-2745.

    56. Wang, J., Sun, Y., Xu, Q., Tan, Y., Pu, J., Yang, H., Brown, E.G.,Liu, J., 2012. Mouse-adapted H9N2 influenza A virus PB2 protein M147L and E627K mutations are critical for high virulence. PLoS One, 7, e40752.

    57. Xu, K.M., Smith, G.J., Bahl, J., Duan, L., Tai, H., Vijaykrishna, D., Wang, J., Zhang, J.X., Li, K.S., Fan, X.H., Webster, R.G., Chen, H., Peiris, J.S.,Guan, Y., 2007. The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005. J. Virol., 81, 10389-10401.

    58. Yang, R., Sun, H., Gao, F., Luo, K., Huang, Z., Tong, Q., Song, H., Han, Q., Liu, J., Lan, Y., Qi, J., Li, H., Chen, S., Xu, M., Qiu, J., Zeng, G., Zhang, X., Huang, C., Pei, R., Zhan, Z., Ye, B., Guo, Y., Zhou, Y., Ye, W., Yao, D., Ren, M., Li, B., Yang, J., Wang, Y., Pu, J., Sun, Y., Shi, Y., Liu, W.J., Ou, X., Gao, G.F., Gao, L.,Liu, J., 2022. Human infection of avian influenza A H3N8 virus and the viral origins: a descriptive study. Lancet Microbe, 3, e824-e834.

    59. Yao, Z., Zheng, H., Xiong, J., Ma, L., Gui, R., Zhu, G., Li, Y., Yang, G., Chen, G., Zhang, J.,Chen, Q., 2022. Genetic and pathogenic characterization of avian influenza virus in migratory birds between 2015 and 2019 in Central China. Microbiol. Spectr., 10, e0165222.

    60. Yuan, R., Liang, L., Wu, J., Kang, Y., Song, Y., Zou, L., Zhang, X., Ni, H.,Ke, C., 2017. Human infection with an avian influenza A/H9N2 virus in Guangdong in 2016. J. Infect., 74, 422-425.

    61. Zhao, Y., Yu, Z., Liu, L., Wang, T., Sun, W., Wang, C., Xia, Z., Gao, Y., Zhou, B., Qian, J.,Xia, X., 2016. Adaptive amino acid substitutions enhance the virulence of a novel human H7N9 influenza virus in mice. Vet. Microbiol., 187, 8-14.

    62. Zhu, W.F., Zhu, Y., Qin, K., Yu, Z.J., Gao, R.B., Yu, H.Y., Zhou, J.F.,Shu, Y.L., 2012. Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice. PLoS One, 7, e33383.

  • 加载中
  • 10.1016j.virs.2023.11.004-ESM.docx

Article Metrics

Article views(2552) PDF downloads(16) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Mutual antagonism of mouse-adaptation mutations in HA and PA proteins on H9N2 virus replication

      Corresponding author: Quanjiao Chen, chenqj@wh.iov.cn
    • a. CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China;
    • b. Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China;
    • c. Hubei Jiangxia Laboratory, Wuhan, 430207, China;
    • d. University of Chinese Academy of Sciences, Beijing, 100049, China

    Abstract: Avian H9N2 viruses have wide host range among the influenza A viruses. However, knowledge of H9N2 mammalian adaptation is limited. To explore the molecular basis of the adaptation to mammals, we performed serial lung passaging of the H9N2 strain A/chicken/Hunan/8.27 YYGK3W3-OC/2018 (3W3) in mice and identified six mutations in the hemagglutinin (HA) and polymerase acidic (PA) proteins. Mutations L226Q, T511I, and A528V of HA were responsible for enhanced pathogenicity and viral replication in mice; notably, HA-L226Q was the key determinant. Mutations T97I, I545V, and S594G of PA contributed to enhanced polymerase activity in mammalian cells and increased viral replication levels in vitro and in vivo. PA-T97I increased viral polymerase activity by accelerating the viral polymerase complex assembly. Our findings revealed that the viral replication was affected by the presence of PA-97I and/or PA-545V in combination with a triple-point HA mutation. Furthermore, the double- and triple-point PA mutations demonstrated antagonistic effect on viral replication when combined with HA-226Q. Notably, any combination of PA mutations, along with double-point HA mutations, resulted in antagonistic effect on viral replication. We also observed antagonism in viral replication between PA-545V and PA-97I, as well as between HA-528V and PA-545V. Our findings demonstrated that several antagonistic mutations in HA and PA proteins affect viral replication, which may contribute to the H9N2 virus adaptation to mice and mammalian cells. These findings can potentially contribute to the monitoring of H9N2 field strains for assessing their potential risk in mammals.

    Reference (62) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return