. doi: 10.1016/j.virs.2023.11.008
Citation: Bo Wang, Leike Zhang, Fei Deng, Zhihong Hu, Manli Wang, Jia Liu. Hsp90 β is critical for the infection of severe fever with thrombocytopenia syndrome virus .VIROLOGICA SINICA, 2024, 39(1) : 113-122.  http://dx.doi.org/10.1016/j.virs.2023.11.008

热休克蛋白90 β对发热伴血小板减少综合征病毒的感染至关重要

  • 通讯作者: 刘佳, liujia@wh.iov.cn
  • 收稿日期: 2023-02-21
    录用日期: 2023-11-22
  • 由发热伴血小板减少综合征病毒(SFTSV)感染引起的发热伴血小板减少综合征(SFTS)是流行于东亚地区的一种新发蜱传传染病,死亡率高达30%。目前关于SFTSV在感染/致病过程中与宿主的相互作用仍然知之甚少。热休克蛋白90(Hsp90)家族由多种高度保守的分子伴侣蛋白组成,在蛋白质的正确折叠和重塑中必不可少,因此对许多病毒的感染有广泛的影响。本研究表明,Hsp90是参与SFTSV感染的重要宿主因子。Hsp90抑制剂可显著降低SFTSV的复制、病毒蛋白表达和非结构蛋白(NSs)包涵体的形成。在4种病毒蛋白中,Hsp90抑制剂对NSs表达水平的降低最为显著,进一步我们通过测试病毒的转录情况,结果显示Hsp90抑制剂未影响基因组的转录,表明Hsp90抑制剂影响的是NSs蛋白翻译水平。进一步,NSs与Hsp90的四种异构体(Hsp90 α、Hsp90 β、GRP94及TRAP1)的免疫共沉淀实验显示只有Hsp90 β与NSs产生特异性相互作用,其他异构体不与其相互作用。同时,我们利用siRNA抑制Hsp90 β表达也能抑制SFTSV的复制。综上结果表明,Hsp90 β在SFTSV感染过程中起着关键作用,可能是开发抗SFTS药物的潜在靶点。

Hsp90 β is critical for the infection of severe fever with thrombocytopenia syndrome virus

  • Corresponding author: Jia Liu, liujia@wh.iov.cn
  • Received Date: 21 February 2023
    Accepted Date: 22 November 2023
  • Severe fever with thrombocytopenia syndrome (SFTS) caused by the SFTS virus (SFTSV) is an emerging disease in East Asia with a fatality rate of up to 30%. However, the viral-host interaction of SFTSV remains largely unknown. The heat-shock protein 90 (Hsp90) family consists of highly conserved chaperones that fold and remodel proteins and has a broad impact on the infection of many viruses. Here, we showed that Hsp90 is an important host factor involved in SFTSV infection. Hsp90 inhibitors significantly reduced SFTSV replication, viral protein expression, and the formation of inclusion bodies consisting of nonstructural proteins (NSs). Among viral proteins, NSs appeared to be the most reduced when Hsp90 inhibitors were used, and further analysis showed that their translation was affected. Co-immunoprecipitation of NSs with four isomers of Hsp90 showed that Hsp90 β specifically interacted with them. Knockdown of Hsp90 β expression also inhibited replication of SFTSV. These results suggest that Hsp90 β plays a critical role during SFTSV infection and could be a potential target for the development of drugs against SFTS.

  • 加载中
    1. Abudurexiti, A., Adkins, S., Alioto, D., Alkhovsky, S.V., Avšič-Županc, T., Ballinger, M.J., Bente, D.A., Beer, M., Bergeron, É., Blair, C.D., Briese, T., Buchmeier, M.J., Burt, F.J., Calisher, C.H., Cháng, C., Charrel, R.N., Choi, I.R., Clegg, J.C.S., De La Torre, J.C., De Lamballerie, X., Dèng, F., Di Serio, F., Digiaro, M., Drebot, M.A., Duàn, X., Ebihara, H., Elbeaino, T., Ergünay, K., Fulhorst, C.F., Garrison, A.R., Gāo, G.F., Gonzalez, J.J., Groschup, M.H., Günther, S., Haenni, A.L., Hall, R.A., Hepojoki, J., Hewson, R., Hú, Z., Hughes, H.R., Jonson, M.G., Junglen, S., Klempa, B., Klingström, J., Kòu, C., Laenen, L., Lambert, A.J., Langevin, S.A., Liu, D., Lukashevich, I.S., Luò, T., Lǚ, C., Maes, P., De Souza, W.M., Marklewitz, M., Martelli, G.P., Matsuno, K., Mielke-Ehret, N., Minutolo, M., Mirazimi, A., Moming, A., Mühlbach, H.P., Naidu, R., Navarro, B., Nunes, M.R.T., Palacios, G., Papa, A., Pauvolid-Corrêa, A., Pawęska, J.T., Qiáo, J., Radoshitzky, S.R., Resende, R.O., Romanowski, V., Sall, A.A., Salvato, M.S., Sasaya, T., Shěn, S., Shí, X., Shirako, Y., Simmonds, P., Sironi, M., Song, J.W., Spengler, J.R., Stenglein, M.D., Sū, Z., Sūn, S., Táng, S., Turina, M., Wáng, B., Wáng, C., Wáng, H., Wáng, J., Wèi, T., Whitfield, A.E., Zerbini, F.M., Zhāng, J., Zhāng, L., Zhāng, Y., Zhang, Y.Z., Zhāng, Y., Zhou, X., Zhū, L.,Kuhn, J.H., 2019. Taxonomy of the order Bunyavirales: update 2019. Arch Virol, 164, 1949-1965.

    2. Albornoz, A., Hoffmann, A.B., Lozach, P.Y.,Tischler, N.D., 2016. Early Bunyavirus-Host Cell Interactions. Viruses, 8.

    3. Basta, S., Stoessel, R., Basler, M., Van Den Broek, M.,Groettrup, M., 2005. Cross-presentation of the long-lived lymphocytic chori-omeningitis virus nucleoprotein does not require neosynthesis and is enhanced via heat shock proteins. J Immunol, 175, 796-805.

    4. Burch, A.D.,Weller, S.K., 2005. Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J Virol, 79, 10740-10749.

    5. Chen, B., Piel, W.H., Gui, L., Bruford, E.,Monteiro, A., 2005. The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics, 86, 627-637.

    6. Chen, W., Sin, S.H., Wen, K.W., Damania, B.,Dittmer, D.P., 2012. Hsp90 inhibitors are efficacious against Kaposi Sarcoma by en-hancing the degradation of the essential viral gene LANA, of the viral co-receptor EphA2 as well as other client proteins. PLoS Pathog, 8, e1003048.

    7. Choi, Y., Park, S.J., Sun, Y., Yoo, J.S., Pudupakam, R.S., Foo, S.S., Shin, W.J., Chen, S.B., Tsichlis, P.N., Lee, W.J., Lee, J.S., Li, W., Brennan, B., Choi, Y.K.,Jung, J.U., 2019. Severe fever with thrombocytopenia syndrome phlebovirus non-structural protein activates TPL2 signalling pathway for viral immunopathogenesis. Nat Microbiol, 4, 429-437.

    8. Gao, L.,Harhaj, E.W., 2013. HSP90 protects the human T-cell leukemia virus type 1 (HTLV-1) tax oncoprotein from proteasomal degradation to support NF-kappaB activation and HTLV-1 replication. J Virol, 87, 13640-13654.

    9. Gu, X.L., Su, W.Q., Zhou, C.M., Fang, L.Z., Zhu, K., Ma, D.Q., Jiang, F.C., Li, Z.M., Li, D., Duan, S.H., Peng, Q.M., Wang, R., Jiang, Y., Han, H.J.,Yu, X.J., 2022. SFTSV infection in rodents and their ectoparasitic chiggers. PLoS Negl Trop Dis, 16, e0010698.

    10. Hong, Y., Bai, M., Qi, X., Li, C., Liang, M., Li, D., Cardona, C.J.,Xing, Z., 2019. Suppression of the IFN-α and -β Induction through Sequestering IRF7 into Viral Inclusion Bodies by Nonstructural Protein NSs in Severe Fever with Thrombocytopenia Syn-drome Bunyavirus Infection. J Immunol, 202, 841-856.

    11. Hoter, A., El-Sabban, M.E.,Naim, H.Y., 2018. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int J Mol Sci, 19.

    12. Khalil, J., Kato, H.,Fujita, T., 2021. The Role of Non-Structural Protein NSs in the Pathogenesis of Severe Fever with Thrombocytopenia Syndrome. Viruses, 13.

    13. Kitagawa, Y., Sakai, M., Shimojima, M., Saijo, M., Itoh, M.,Gotoh, B., 2018. Nonstructural protein of severe fever with thrombocy-topenia syndrome phlebovirus targets STAT2 and not STAT1 to inhibit type I interferon-stimulated JAK-STAT signaling. Microbes Infect, 20, 360-368.

    14. Kramer, G., Boehringer, D., Ban, N.,Bukau, B., 2009. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol, 16, 589-597.

    15. Lam, T.T., Liu, W., Bowden, T.A., Cui, N., Zhuang, L., Liu, K., Zhang, Y.Y., Cao, W.C.,Pybus, O.G., 2013. Evolutionary and molec-ular analysis of the emergent severe fever with thrombocytopenia syndrome virus. Epidemics, 5, 1-10.

    16. Liu, Y., Li, Q., Hu, W., Wu, J., Wang, Y., Mei, L., Walker, D.H., Ren, J., Wang, Y.,Yu, X.J., 2012. Person-to-person transmission of severe fever with thrombocytopenia syndrome virus. Vector Borne Zoonotic Dis, 12, 156-160.

    17. Min, Y.Q., Ning, Y.J., Wang, H.,Deng, F., 2020. A RIG-I-like receptor directs antiviral responses to a bunyavirus and is antagonized by virus-induced blockade of TRIM25-mediated ubiquitination. J Biol Chem, 295, 9691-9711.

    18. Naito, T., Momose, F., Kawaguchi, A.,Nagata, K., 2007. Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol, 81, 1339-1349.

    19. Ning, Y.J., Feng, K., Min, Y.Q., Cao, W.C., Wang, M., Deng, F., Hu, Z.,Wang, H., 2015. Disruption of type I interferon signaling by the nonstructural protein of severe fever with thrombocytopenia syndrome virus via the hijacking of STAT2 and STAT1 into inclusion bodies. J Virol, 89, 4227-4236.

    20. Qu, B., Qi, X., Wu, X., Liang, M., Li, C., Cardona, C.J., Xu, W., Tang, F., Li, Z., Wu, B., Powell, K., Wegner, M., Li, D.,Xing, Z., 2012. Suppression of the interferon and NF-kappaB responses by severe fever with thrombocytopenia syndrome virus. J Virol, 86, 8388-8401.

    21. Reyes-Del Valle, J., Chávez-Salinas, S., Medina, F.,Del Angel, R.M., 2005. Heat shock protein 90 and heat shock protein 70 are com-ponents of dengue virus receptor complex in human cells. J Virol, 79, 4557-4567.

    22. Rochlin, I., Benach, J.L., Furie, M.B., Thanassi, D.G.,Kim, H.K., 2022. Rapid invasion and expansion of the Asian longhorned tick (Haemaphysalis longicornis) into a new area on Long Island, New York, USA. Ticks Tick Borne Dis, 14, 102088.

    23. Solit, D.B.,Chiosis, G., 2008. Development and application of Hsp90 inhibitors. Drug Discov Today, 13, 38-43.

    24. Song, P., Zheng, N., Liu, Y., Tian, C., Wu, X., Ma, X., Chen, D., Zou, X., Wang, G., Wang, H., Zhang, Y., Lu, S., Wu, C.,Wu, Z., 2018. Deficient humoral responses and disrupted B-cell immunity are associated with fatal SFTSV infection. Nat Commun, 9, 3328.

    25. Sun, Q., Qi, X., Zhang, Y., Wu, X., Liang, M., Li, C., Li, D., Cardona, C.J.,Xing, Z., 2016. Synaptogyrin-2 Promotes Replication of a Novel Tick-borne Bunyavirus through Interacting with Viral Nonstructural Protein NSs. J Biol Chem, 291, 16138-16149.

    26. Sun, X., Barlow, E.A., Ma, S., Hagemeier, S.R., Duellman, S.J., Burgess, R.R., Tellam, J., Khanna, R.,Kenney, S.C., 2010. Hsp90 inhibitors block outgrowth of EBV-infected malignant cells in vitro and in vivo through an EBNA1-dependent mechanism. Proc Natl Acad Sci U S A, 107, 3146-3151.

    27. Sun, X., Bristol, J.A., Iwahori, S., Hagemeier, S.R., Meng, Q., Barlow, E.A., Fingeroth, J.D., Tarakanova, V.L., Kalejta, R.F.,Kenney, S.C., 2013. Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol, 87, 10126-10138.

    28. Tsou, Y.L., Lin, Y.W., Chang, H.W., Lin, H.Y., Shao, H.Y., Yu, S.L., Liu, C.C., Chitra, E., Sia, C.,Chow, Y.H., 2013. Heat shock protein 90: role in enterovirus 71 entry and assembly and potential target for therapy. PLoS One, 8, e77133.

    29. Tufts, D.M., Goodman, L.B., Benedict, M.C., Davis, A.D., Vanacker, M.C.,Diuk-Wasser, M., 2021. Association of the invasive Haemaphysalis longicornis tick with vertebrate hosts, other native tick vectors, and tick-borne pathogens in New York City, USA. Int J Parasitol, 51, 149-157.

    30. Wang, Y., Jin, F., Wang, R., Li, F., Wu, Y., Kitazato, K.,Wang, Y., 2017. HSP90: a promising broad-spectrum antiviral drug target. Arch Virol, 162, 3269-3282.

    31. Wu, X., Qi, X., Liang, M., Li, C., Cardona, C.J., Li, D.,Xing, Z., 2014a. Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus. Faseb j, 28, 2504-2516.

    32. Wu, X., Qi, X., Qu, B., Zhang, Z., Liang, M., Li, C., Cardona, C.J., Li, D.,Xing, Z., 2014b. Evasion of antiviral immunity through sequestering of TBK1/IKKε/IRF3 into viral inclusion bodies. J Virol, 88, 3067-3076.

    33. Yang, K., Shi, H., Qi, R., Sun, S., Tang, Y., Zhang, B.,Wang, C., 2006. Hsp90 regulates activation of interferon regulatory factor 3 and TBK-1 stabilization in Sendai virus-infected cells. Mol Biol Cell, 17, 1461-1471.

    34. Yoshikawa, R., Sakabe, S., Urata, S.,Yasuda, J., 2019. Species-Specific Pathogenicity of Severe Fever with Thrombocytopenia Syn-drome Virus Is Determined by Anti-STAT2 Activity of NSs. J Virol, 93.

    35. Yu, X.J., Liang, M.F., Zhang, S.Y., Liu, Y., Li, J.D., Sun, Y.L., Zhang, L., Zhang, Q.F., Popov, V.L., Li, C., Qu, J., Li, Q., Zhang, Y.P., Hai, R., Wu, W., Wang, Q., Zhan, F.X., Wang, X.J., Kan, B., Wang, S.W., Wan, K.L., Jing, H.Q., Lu, J.X., Yin, W.W., Zhou, H., Guan, X.H., Liu, J.F., Bi, Z.Q., Liu, G.H., Ren, J., Wang, H., Zhao, Z., Song, J.D., He, J.R., Wan, T., Zhang, J.S., Fu, X.P., Sun, L.N., Dong, X.P., Feng, Z.J., Yang, W.Z., Hong, T., Zhang, Y., Walker, D.H., Wang, Y.,Li, D.X., 2011. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med, 364, 1523-1532.

    36. Zhang, J., Li, H., Liu, Y., Zhao, K., Wei, S., Sugarman, E.T., Liu, L.,Zhang, G., 2022. Targeting HSP90 as a Novel Therapy for Cancer: Mechanistic Insights and Translational Relevance. Cells, 11.

    37. Zhang, L.K., Wang, B., Xin, Q., Shang, W., Shen, S., Xiao, G., Deng, F., Wang, H., Hu, Z.,Wang, M., 2019. Quantitative Proteomic Analysis Reveals Unfolded-Protein Response Involved in Severe Fever with Thrombocytopenia Syndrome Virus Infection. J Virol, 93.

  • 加载中
  • 10.1016j.virs.2023.11.008-ESM.docx

Article Metrics

Article views(2865) PDF downloads(13) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Hsp90 β is critical for the infection of severe fever with thrombocytopenia syndrome virus

      Corresponding author: Jia Liu, liujia@wh.iov.cn
    • a. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China;
    • b. The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, China

    Abstract: Severe fever with thrombocytopenia syndrome (SFTS) caused by the SFTS virus (SFTSV) is an emerging disease in East Asia with a fatality rate of up to 30%. However, the viral-host interaction of SFTSV remains largely unknown. The heat-shock protein 90 (Hsp90) family consists of highly conserved chaperones that fold and remodel proteins and has a broad impact on the infection of many viruses. Here, we showed that Hsp90 is an important host factor involved in SFTSV infection. Hsp90 inhibitors significantly reduced SFTSV replication, viral protein expression, and the formation of inclusion bodies consisting of nonstructural proteins (NSs). Among viral proteins, NSs appeared to be the most reduced when Hsp90 inhibitors were used, and further analysis showed that their translation was affected. Co-immunoprecipitation of NSs with four isomers of Hsp90 showed that Hsp90 β specifically interacted with them. Knockdown of Hsp90 β expression also inhibited replication of SFTSV. These results suggest that Hsp90 β plays a critical role during SFTSV infection and could be a potential target for the development of drugs against SFTS.

    Reference (37) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return