. doi: 10.1016/j.virs.2023.11.010
Citation: Xiaoxiao Meng, Yong Zhu, Wenyu Yang, Jiaxiang Zhang, Wei Jin, Rui Tian, Zhengfeng Yang, Ruilan Wang. HIF-1α promotes virus replication and cytokine storm in H1N1 virus-induced severe pneumonia through cellular metabolic reprogramming .VIROLOGICA SINICA, 2024, 39(1) : 81-96.  http://dx.doi.org/10.1016/j.virs.2023.11.010

HIF-1α在H1N1病毒感染致重症肺炎中通过调控代谢重编程促进病毒复制及细胞因子风暴

  • H1N1病毒致重症肺炎患者的病死率与病毒复制及细胞因子风暴密切相关。然而,引起病毒复制和细胞因子风暴的机制仍未完全阐明。我们发现,HIF-1α活化参与调控H1N1病毒复制及细胞因子风暴。H1N1病毒感染后,HIF-1α的表达明显升高。体内外研究证实,抑制HIF-1α后,可以明显减轻H1N1病毒引起的肺损伤,减轻病毒复制及细胞因子风暴。其机制可能是,H1N1病毒感染肺泡上皮细胞后,可以诱导糖代谢向糖酵解偏移,快速产生ATP和乳酸;抑制糖酵解可以明显减少病毒复制及炎症因子。进一步研究发现,H1N1病毒能够通过活化HIF-1α促进糖酵解关键酶HK2的表达,一方面为病毒复制快速供能,另一方面产生的乳酸能够减少MAVS/RIG-I复合物的形成,进而抑制IFN-α/β的产生。综上所述,这些结果表明,H1N1感染后通过上调HIF-1α的表达调控HK2促进细胞代谢重编程向糖酵解偏移,增加病毒复制及细胞因子风暴。本研究将为寻找治疗H1N1病毒感染引起重症肺炎的潜在靶点提供理论依据。

HIF-1α promotes virus replication and cytokine storm in H1N1 virus-induced severe pneumonia through cellular metabolic reprogramming

  • The mortality of patients with severe pneumonia caused by H1N1 infection is closely related to viral replication and cytokine storm. However, the specific mechanisms triggering virus replication and cytokine storm are still not fully elucidated. Here, we identified hypoxia inducible factor-1α (HIF-1α) as one of the major host molecules that facilitates H1N1 virus replication followed by cytokine storm in alveolar epithelial cells. Specifically, HIF-1α protein expression is upregulated after H1N1 infection. Deficiency of HIF-1α attenuates pulmonary injury, viral replication and cytokine storm in vivo. In addition, viral replication and cytokine storm were inhibited after HIF-1α knockdown in vitro. Mechanistically, the invasion of H1N1 virus into alveolar epithelial cells leads to a shift in glucose metabolism to glycolysis, with rapid production of ATP and lactate. Inhibition of glycolysis significantly suppresses viral replication and inflammatory responses. Further analysis revealed that H1N1-induced HIF-1α can promote the expression of hexokinase 2 (HK2), the key enzyme of glycolysis, and then not only provide energy for the rapid replication of H1N1 virus but also produce lactate, which reduces the accumulation of the MAVS/RIG-I complex and inhibits IFN-α/β production. In conclusion, this study demonstrated that the upregulation of HIF-1α by H1N1 infection augments viral replication and cytokine storm by cellular metabolic reprogramming toward glycolysis mainly through upregulation of HK2, providing a theoretical basis for finding potential targets for the treatment of severe pneumonia caused by H1N1 infection.

  • 加载中
    1. Aguilar-Cazares D, Chavez-Dominguez R, Marroquin-Mucino M, Perez-Medina M, Benito-Lopez JJ, Camarena A, Rumbo-Nava U, Lopez-Gonzalez JS. 2022. The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front. Endocrinol. (Lausanne), 13: 929572.

    2. Akman M, Belisario DC, Salaroglio IC, Kopecka J, Donadelli M, De Smaele E, Riganti C. 2021. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons. J. Exp. Clin. Cancer Res., 40: 28.

    3. Al Madhoun A, Kochumon S, Al-Rashed F, Sindhu S, Thomas R, Miranda L, Al-Mulla F, Ahmad R. 2022. Dectin-1 as a potential inflammatory biomarker for metabolic inflammation in adipose tissue of individuals with obesity. Cells, 11: 2879.

    4. Beljanski V, Chiang C, Kirchenbaum GA, Olagnier D, Bloom CE, Wong T, Haddad EK, Trautmann L, Ross TM, Hiscott J. 2015. Enhanced influenza virus-like particle vaccination with a structurally optimized RIG-I agonist as adjuvant. J. Virol., 89: 10612-10624.

    5. Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y, Qiu S, Li L, Karamfilova Zaharieva E, Zhou X, Xu Y. 2020. Circular RNA circRNF20 promotes breast cancer tumorigenesis and warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis., 11: 145.

    6. Chen MY, Li H, Lu XX, Ling LJ, Weng HB, Sun W, Chen DF, Zhang YY. 2019. Houttuynia cordata polysaccharide alleviated intestinal injury and modulated intestinal microbiota in H1N1 virus infected mice. Chin. J. Nat. Med., 17: 187-197.

    7. Chuang C, Prasanth KR, Nagy PD. 2017. The glycolytic pyruvate kinase is recruited directly into the viral replicase complex to generate ATP for RNA synthesis. Cell Host Microbe, 22: 639-652 e637.

    8. Dong L, He Y, Zhou S, Cao Y, Li Y, Bi Y, Liu G. 2019. HIF1α-dependent metabolic signals control the differentiation of follicular helper T cells. Cells, 8: 1450.

    9. El-Baky NA, Uversky VN, Redwan EM. 2015. Human consensus interferons: bridging the natural and artificial cytokines with intrinsic disorder. Cytokine Growth Factor Rev., 26: 637-645.

    10. Fontaine KA, Sanchez EL, Camarda R, Lagunoff M. 2015. Dengue virus induces and requires glycolysis for optimal replication. J. Virol., 89: 2358-2366.

    11. Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL. 1998. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp. Cell Res., 243: 359-366.

    12. Frakolaki E, Kaimou P, Moraiti M, Kalliampakou KI, Karampetsou K, Dotsika E, Liakos P, Vassilacopoulou D, Mavromara P, Bartenschlager R, Vassilaki N. 2018. The role of tissue oxygen tension in dengue virus replication. Cells, 7: 241.

    13. Gran JM, Kacelnik O, Grjibovski AM, Aavitsland P, Iversen BG. 2013. Counting pandemic deaths: comparing reported numbers of deaths from influenza a(H1N1)pdm09 with estimated excess mortality. Influenza Other Respir. Viruses, 7: 1370-1379.

    14. Guo X, Zhu Z, Zhang W, Meng X, Zhu Y, Han P, Zhou X, Hu Y, Wang R. 2017. Nuclear translocation of HIF-1α induced by influenza a (H1N1) infection is critical to the production of proinflammatory cytokines. Emerg. Microbes Infect., 6: e39.

    15. Haller O, Kochs G. 2002. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity. Traffic, 3: 710-717.

    16. Hallez C, Li X, Suspene R, Thiers V, Bouzidi MS, C MD, Lucansky V, Wain-Hobson S, Gaudin R, Vartanian JP. 2019. Hypoxia-induced human deoxyribonuclease I is a cellular restriction factor of hepatitis B virus. Nat. Microbiol., 4: 1196-1207.

    17. Hayman A, Comely S, Lackenby A, Murphy S, McCauley J, Goodbourn S, Barclay W. 2006. Variation in the ability of human influenza A viruses to induce and inhibit the IFN-beta pathway. Virology, 347: 52-64.

    18. Herold S, Becker C, Ridge KM, Budinger GR. 2015. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur. Respir. J., 45: 1463-1478.

    19. Hittinger M, Juntke J, Kletting S, Schneider-Daum N, de Souza Carvalho C, Lehr CM. 2015. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models. Adv. Drug Deliv. Rev., 85: 44-56.

    20. Huo C, Tang Y, Li X, Han D, Gu Q, Su R, Liu Y, Reiter RJ, Liu G, Hu Y, Yang H. 2023. Melatonin alleviates lung injury in H1N1-infected mice by mast cell inactivation and cytokine storm suppression. PLoS Pathog., 19: e1011406.

    21. Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R, Tempia S, Cohen C, Gran JM, Schanzer D, Cowling BJ, Wu P, Kyncl J, Ang LW, Park M, Redlberger-Fritz M, Yu H, Espenhain L, Krishnan A, Emukule G, van Asten L, Pereira da Silva S, Aungkulanon S, Buchholz U, Widdowson MA, Bresee JS, Global Seasonal Influenza-associated Mortality Collaborator N. 2018. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet, 391: 1285-1300.

    22. Iwasaki A, Pillai PS. 2014. Innate immunity to influenza virus infection. Nat. Rev. Immunol., 14: 315-328.

    23. Jung GS, Jeon JH, Choi YK, Jang SY, Park SY, Kim SW, Byun JK, Kim MK, Lee S, Shin EC, Lee IK, Kang YN, Park KG. 2016. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication. Sci. Rep., 6: 30846.

    24. Koyasu S, Kobayashi M, Goto Y, Hiraoka M, Harada H. 2018. Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge. Cancer Sci., 109: 560-571.

    25. Krug RM, Yuan W, Noah DL, Latham AG. 2003. Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology, 309: 181-189.

    26. Li M, Chen Y, Chen T, Hu S, Chen L, Shen L, Li F, Yang J, Sun Y, Wang D, He L, Qin S, Shu Y. 2021. A host-based whole genome sequencing study reveals novel risk loci associated with severity of influenza a(H1N1)pdm09 infection. Emerg. Microbes Infect., 10: 123-131.

    27. Li TC, Chan MC, Lee N. 2015. Clinical implications of antiviral resistance in influenza. Viruses, 7: 4929-4944.

    28. Luo F, Zou Z, Liu X, Ling M, Wang Q, Wang Q, Lu L, Shi L, Liu Y, Liu Q, Zhang A. 2017. Enhanced glycolysis, regulated by HIF-1α via MCT-4, promotes inflammation in arsenite-induced carcinogenesis. Carcinogenesis, 38: 615-626.

    29. Mascanfroni ID, Takenaka MC, Yeste A, Patel B, Wu Y, Kenison JE, Siddiqui S, Basso AS, Otterbein LE, Pardoll DM, Pan F, Priel A, Clish CB, Robson SC, Quintana FJ. 2015. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat. Med., 21: 638-646.

    30. Matak P, Heinis M, Mathieu JR, Corriden R, Cuvellier S, Delga S, Mounier R, Rouquette A, Raymond J, Lamarque D, Emile JF, Nizet V, Touati E, Peyssonnaux C. 2015. Myeloid HIF-1 is protective in helicobacter pylori-mediated gastritis. J. Immunol., 194: 3259-3266.

    31. Matsuoka T, Sato T, Akita T, Yanagida J, Ohge H, Kuwabara M, Tanaka J. 2016. High vaccination coverage among children during influenza a(H1N1)pdm09 as a potential factor of herd immunity. Int. J. Environ. Res. Public Health, 13: 1017.

    32. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J. 2005. Cardif is an adaptor protein in the rig-i antiviral pathway and is targeted by hepatitis c virus. Nature, 437: 1167-1172.

    33. Miyasaka A, Oda K, Ikeda Y, Sone K, Fukuda T, Inaba K, Makii C, Enomoto A, Hosoya N, Tanikawa M, Uehara Y, Arimoto T, Kuramoto H, Wada-Hiraike O, Miyagawa K, Yano T, Kawana K, Osuga Y, Fujii T. 2015. Pi3k/mtor pathway inhibition overcomes radioresistance via suppression of the hif1-alpha/vegf pathway in endometrial cancer. Gynecol. Oncol., 138: 174-180.

    34. Morris DR, Qu Y, Agrawal A, Garofalo RP, Casola A. 2020. HIF-1α modulates core metabolism and virus replication in primary airway epithelial cells infected with respiratory syncytial virus. Viruses, 12: 1088.

    35. Murdaca G, Paladin F, Tonacci A, Isola S, Allegra A, Gangemi S. 2021. The potential role of cytokine storm pathway in the clinical course of viral respiratory pandemic. Biomedicines, 9: 1688.

    36. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. 2006. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab., 3: 187-197.

    37. Passalacqua KD, Lu J, Goodfellow I, Kolawole AO, Arche JR, Maddox RJ, Carnahan KE, O'Riordan MXD, Wobus CE. 2019. Glycolysis is an intrinsic factor for optimal replication of a norovirus. mBio, 10: e02175-18.

    38. Pleschka S. 2013. Overview of influenza viruses. Curr. Top. Microbiol. Immunol., 370: 1-20.

    39. Ren L, Zhang W, Zhang J, Zhang J, Zhang H, Zhu Y, Meng X, Yi Z, Wang R. 2021. Influenza a virus (H1N1) infection induces glycolysis to facilitate viral replication. Virol. Sin., 36: 1532-1542.

    40. Ren L, Zhang W, Han P, Zhang J, Zhu Y, Meng X, Zhang J, Hu Y, Yi Z, Wang R. 2019. Influenza a virus (H1N1) triggers a hypoxic response by stabilizing hypoxia-inducible factor-1alpha via inhibition of proteasome. Virology, 530: 51-58.

    41. Rondina MT, Tatsumi K, Bastarache JA, Mackman N. 2016. Microvesicle tissue factor activity and interleukin-8 levels are associated with mortality in patients with influenza a/H1N1 infection. Crit. Care Med., 44: e574-e578.

    42. Samuel CE. 2001. Antiviral actions of interferons. Clin. Microbiol. Rev., 14: 778-809.

    43. Sarda C, Palma P, Rello J. 2019. Severe influenza: overview in critically ill patients. Curr. Opin. Crit. Care, 25: 449-457.

    44. Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 122: 669-682.

    45. Shapira SD, Gat-Viks I, Shum BO, Dricot A, de Grace MM, Wu L, Gupta PB, Hao T, Silver SJ, Root DE, Hill DE, Regev A, Hacohen N. 2009. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell, 139: 1255-1267.

    46. Sharma AL, Wang H, Zhang Z, Millien G, Tyagi M, Hongpaisan J. 2022. HIV promotes neurocognitive impairment by damaging the hippocampal microvessels. Mol. Neurobiol., 59: 4966-4986.

    47. Short KR, Kasper J, van der Aa S, Andeweg AC, Zaaraoui-Boutahar F, Goeijenbier M, Richard M, Herold S, Becker C, Scott DP, Limpens RW, Koster AJ, Barcena M, Fouchier RA, Kirkpatrick CJ, Kuiken T. 2016. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J., 47: 954-966.

    48. Song J, Li M, Li C, Liu K, Zhu Y, Zhang H. 2022. Friend or foe: RIG- I like receptors and diseases. Autoimmun. Rev., 21: 103161.

    49. Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, Sato K. 2017. Type I interferon responses by HIV-1 infection: association with disease progression and control. Front. Immunol., 8: 1823.

    50. Sun R, Meng X, Pu Y, Sun F, Man Z, Zhang J, Yin L, Pu Y. 2019. Overexpression of HIF-1a could partially protect K562 cells from 1,4-benzoquinone induced toxicity by inhibiting ROS, apoptosis and enhancing glycolysis. Toxicol. In Vitro, 55: 18-23.

    51. Tai TC, Wong-Faull DC, Claycomb R, Wong DL. 2009. Hypoxic stress-induced changes in adrenergic function: role of HIF1 alpha. J. Neurochem., 109: 513-524.

    52. Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell, 140: 805-820.

    53. Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, Garcia-Sastre A. 2000. Activation of interferon regulatory factor 3 is inhibited by the influenza a virus ns1 protein. J. Virol., 74: 7989-7996.

    54. Thyrsted J, Storgaard J, Blay-Cadanet J, Heinz A, Thielke AL, Crotta S, de Paoli F, Olagnier D, Wack A, Hiller K, Hansen AL, Holm CK. 2021. Influenza a induces lactate formation to inhibit type I IFN in primary human airway epithelium. iScience, 24: 103300.

    55. Triner D, Shah YM. 2016. Hypoxia-inducible factors: a central link between inflammation and cancer. J. Clin. Invest., 126: 3689-3698.

    56. Uyeki T. 2009. Antiviral treatment for patients hospitalized with 2009 pandemic influenza a (H1N1). N. Engl. J. Med., 361: e110.

    57. Watanabe T, Watanabe S, Kawaoka Y. 2010. Cellular networks involved in the influenza virus life cycle. Cell Host Microbe, 7: 427-439.

    58. Xi Y, Kim T, Brumwell AN, Driver IH, Wei Y, Tan V, Jackson JR, Xu J, Lee DK, Gotts JE, Matthay MA, Shannon JM, Chapman HA, Vaughan AE. 2017. Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nat. Cell Biol., 19: 904-914.

    59. Xu L, Huan L, Guo T, Wu Y, Liu Y, Wang Q, Huang S, Xu Y, Liang L, He X. 2020. LncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1α. Oncogene, 39: 7005-7018.

    60. Zalpoor H, Akbari A, Nabi-Afjadi M, Forghaniesfidvajani R, Tavakol C, Barzegar Z, Iravanpour F, Hosseini M, Mousavi SR, Farrokhi MR. 2022. Hypoxia-inducible factor 1 alpha (HIF-1α) stimulated and P2X7 receptor activated by COVID-19, as a potential therapeutic target and risk factor for epilepsy. Hum. Cell, 35: 1338-1345.

    61. Zhang SL, Hu X, Zhang W, Tam KY. 2016. Unexpected discovery of dichloroacetate derived adenosine triphosphate competitors targeting pyruvate dehydrogenase kinase to inhibit cancer proliferation. J. Med. Chem., 59: 3562-3568.

    62. Zhang W, Wang G, Xu ZG, Tu H, Hu F, Dai J, Chang Y, Chen Y, Lu Y, Zeng H, Cai Z, Han F, Xu C, Jin G, Sun L, Pan BS, Lai SW, Hsu CC, Xu J, Chen ZZ, Li HY, Seth P, Hu J, Zhang X, Li H, Lin HK. 2019. Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell, 178: 176-189 e115.

    63. Zhao C, Chen J, Cheng L, Xu K, Yang Y, Su X. 2020. Deficiency of HIF-1α enhances influenza A virus replication by promoting autophagy in alveolar type II epithelial cells. Emerg. Microbes Infect., 9: 691-706.

    64. Zhou X, Li YJ, Gao SY, Wang XZ, Wang PY, Yan YF, Xie SY, Lv CJ. 2015. Sulindac has strong antifibrotic effects by suppressing STAT3-related miR-21. J. Cell. Mol. Med., 19: 1103-1113.

    65. Zumla A, Rao M, Wallis RS, Kaufmann SH, Rustomjee R, Mwaba P, Vilaplana C, Yeboah-Manu D, Chakaya J, Ippolito G, Azhar E, Hoelscher M, Maeurer M, Host-Directed Therapies Network Consortium. 2016. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect. Dis., 16: e47-e63.

  • 加载中
  • 10.1016j.virs.2023.11.010-ESM.docx

Article Metrics

Article views(2468) PDF downloads(11) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    HIF-1α promotes virus replication and cytokine storm in H1N1 virus-induced severe pneumonia through cellular metabolic reprogramming

      Corresponding author: Zhengfeng Yang, zhengfeng.yang@shgn.cn
      Corresponding author: Ruilan Wang, wangyusun@hotmail.com
    • a. Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China;
    • b. Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China

    Abstract: The mortality of patients with severe pneumonia caused by H1N1 infection is closely related to viral replication and cytokine storm. However, the specific mechanisms triggering virus replication and cytokine storm are still not fully elucidated. Here, we identified hypoxia inducible factor-1α (HIF-1α) as one of the major host molecules that facilitates H1N1 virus replication followed by cytokine storm in alveolar epithelial cells. Specifically, HIF-1α protein expression is upregulated after H1N1 infection. Deficiency of HIF-1α attenuates pulmonary injury, viral replication and cytokine storm in vivo. In addition, viral replication and cytokine storm were inhibited after HIF-1α knockdown in vitro. Mechanistically, the invasion of H1N1 virus into alveolar epithelial cells leads to a shift in glucose metabolism to glycolysis, with rapid production of ATP and lactate. Inhibition of glycolysis significantly suppresses viral replication and inflammatory responses. Further analysis revealed that H1N1-induced HIF-1α can promote the expression of hexokinase 2 (HK2), the key enzyme of glycolysis, and then not only provide energy for the rapid replication of H1N1 virus but also produce lactate, which reduces the accumulation of the MAVS/RIG-I complex and inhibits IFN-α/β production. In conclusion, this study demonstrated that the upregulation of HIF-1α by H1N1 infection augments viral replication and cytokine storm by cellular metabolic reprogramming toward glycolysis mainly through upregulation of HK2, providing a theoretical basis for finding potential targets for the treatment of severe pneumonia caused by H1N1 infection.

    Reference (65) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return