. doi: 10.1016/j.virs.2023.04.003
Citation: Siqi Dong, Wenting Mao, Yang Liu, Xiaoying Jia, Yueli Zhang, Minmin Zhou, Yuxia Hou, Gengfu Xiao, Wei Wang. Deletion of the first glycosylation site promotes Lassa virus glycoprotein-mediated membrane fusion .VIROLOGICA SINICA, 2023, 38(3) : 380-386.  http://dx.doi.org/10.1016/j.virs.2023.04.003

拉沙病毒糖蛋白第一个糖基化位点的缺失促进病毒膜融合

  • 通讯作者: 王薇, wangwei@wh.iov.cn
  • 收稿日期: 2023-01-11
    录用日期: 2023-04-10
  • 拉沙病毒(Lassa virus,LASV)属于沙粒病毒科(Arenaviridae)哺乳类沙粒病毒属(Mammarenavirus),主要在西非流行,会引起人类严重的出血性拉沙热。LASV的糖蛋白复合物(GPC)是高度糖基化修饰的,有11个N-糖基化位点。糖链均匀包裹在病毒颗粒的表面,会遮蔽GPC上的抗原和中和表位,并参与调控病毒蛋白折叠、受体识别和免疫逃避。在这项研究中,我们着重研究了第一个糖基化位点,因为它的缺失突变体(N79Q)会出乎意料地导致膜融合增强,而它对GPC的表达、裂解和受体结合的影响很小。同时,外包GPCN79Q的假病毒对中和抗体37.7H更敏感,而且其毒力减弱。探索LASV GPC上关键糖基化位点的生物学功能将有助于阐明LASV感染的机制,并为开发抗LASV感染的减毒疫苗提供策略。

Deletion of the first glycosylation site promotes Lassa virus glycoprotein-mediated membrane fusion

  • Corresponding author: Wei Wang, wangwei@wh.iov.cn
  • Received Date: 11 January 2023
    Accepted Date: 10 April 2023
  • The Lassa virus (LASV) is endemic in West Africa and causes severe hemorrhagic Lassa fever in humans. The glycoprotein complex (GPC) of LASV is highly glycosylation-modified, with 11 N-glycosylation sites. All 11 N-linked glycan chains play critical roles in GPC cleavage, folding, receptor binding, membrane fusion, and immune evasion. In this study, we focused on the first glycosylation site because its deletion mutant (N79Q) results in an unexpected enhanced membrane fusion, whereas it exerts little effect on GPC expression, cleavage, and receptor binding. Meanwhile, the pseudotype virus bearing GPCN79Q was more sensitive to the neutralizing antibody 37.7H and was attenuated in virulence. Exploring the biological functions of the key glycosylation site on LASV GPC will help elucidate the mechanism of LASV infection and provide strategies for the development of attenuated vaccines against LASV infection.

  • 加载中
    1. AOKI, Y., AIZAKI, H., SHIMOIKE, T., TANI, H., ISHII, K., SAITO, I., MATSUURA, Y. & MIYAMURA, T. 1998. A human liver cell line exhibits efficient translation of HCV RNAs produced by a recombinant adenovirus expressing T7 RNA polymerase. Virology, 250, 140-50.

    2. CAO, J., ZHANG, G., ZHOU, M., LIU, Y., XIAO, G. & WANG, W. 2021. Characterizing the Lassa Virus Envelope Glycoprotein Membrane Proximal External Region for Its Role in Fusogenicity. Virol Sin, 36, 273-280.

    3. CAO, W., HENRY, M. D., BORROW, P., YAMADA, H., ELDER, J. H., RAVKOV, E. V., NICHOL, S. T., COMPANS, R. W., CAMPBELL, K. P. & OLDSTONE, M. B. 1998. Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science, 282, 2079-81.

    4. EICHLER, R., LENZ, O., GARTEN, W. & STRECKER, T. 2006. The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C. Virol J, 3, 41.

    5. EICHLER, R., LENZ, O., STRECKER, T., EICKMANN, M., KLENK, H. D. & GARTEN, W. 2003. Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. EMBO Rep, 4, 1084-8.

    6. ENRIQUEZ, A. S., BUCK, T. K., LI, H., NORRIS, M. J., MOON-WALKER, A., ZANDONATTI, M. A., HARKINS, S. S., ROBINSON, J. E., BRANCO, L. M., GARRY, R. F., SAPHIRE, E. O. & HASTIE, K. M. 2022. Delineating the mechanism of anti-Lassa virus GPC-A neutralizing antibodies. Cell Rep, 39, 110841.

    7. HASTIE, K. M., CROSS, R. W., HARKINS, S. S., ZANDONATTI, M. A., KOVAL, A. P., HEINRICH, M. L., ROWLAND, M. M., ROBINSON, J. E., GEISBERT, T. W., GARRY, R. F., BRANCO, L. M. & SAPHIRE, E. O. 2019. Convergent Structures Illuminate Features for Germline Antibody Binding and Pan-Lassa Virus Neutralization. Cell, 178, 1004-1015 e14.

    8. HASTIE, K. M., ZANDONATTI, M. A., KLEINFELTER, L. M., HEINRICH, M. L., ROWLAND, M. M., CHANDRAN, K., BRANCO, L. M., ROBINSON, J. E., GARRY, R. F. & SAPHIRE, E. O. 2017. Structural basis for antibody-mediated neutralization of Lassa virus. Science, 356, 923-928.

    9. HOU, Y., LIU, Y., JIA, X., ZHOU, M., MAO, W., DONG, S., ZHANG, Y., XIAO, G. & WANG, W. 2022. Screening and Identification of Lassa Virus Entry Inhibitors from a Fragment-Based Drug Discovery Library. Viruses, 14,2649.

    10. HOULIHAN, C. & BEHRENS, R. 2017. Lassa fever. BMJ, 358, j2986.

    11. KATZ, M., WEINSTEIN, J., EILON-ASHKENAZY, M., GEHRING, K., COHEN-DVASHI, H., ELAD, N., FLEISHMAN, S. J. & DISKIN, R. 2022. Structure and receptor recognition by the Lassa virus spike complex. Nature, 603, 174-179.

    12. KOMA, T., HUANG, C., COSCIA, A., HALLAM, S., MANNING, J. T., MARUYAMA, J., WALKER, A. G., MILLER, M., SMITH, J. N., PATTERSON, M., ABRAHAM, J. & PAESSLER, S. 2021. Glycoprotein N-linked glycans play a critical role in arenavirus pathogenicity. PLoS Pathog, 17, e1009356.

    13. KUHN, J. H., ADKINS, S., AGWANDA, B. R., AL KUBRUSLI, R., ALKHOVSKY, S. V., AMARASINGHE, G. K., AVSIC-ZUPANC, T., AYLLON, M. A., BAHL, J., BALKEMA-BUSCHMANN, A., BALLINGER, M. J., BASLER, C. F., BAVARI, S., BEER, M., BEJERMAN, N., BENNETT, A. J., BENTE, D. A., BERGERON, E., BIRD, B. H., BLAIR, C. D., BLASDELL, K. R., BLYSTAD, D. R., BOJKO, J., BORTH, W. B., BRADFUTE, S., BREYTA, R., BRIESE, T., BROWN, P. A., BROWN, J. K., BUCHHOLZ, U. J., BUCHMEIER, M. J., BUKREYEV, A., BURT, F., BUTTNER, C., CALISHER, C. H., CAO, M., CASAS, I., CHANDRAN, K., CHARREL, R. N., CHENG, Q., CHIAKI, Y., CHIAPELLO, M., CHOI, I. R., CIUFFO, M., CLEGG, J. C. S., CROZIER, I., DAL BO, E., DE LA TORRE, J. C., DE LAMBALLERIE, X., DE SWART, R. L., DEBAT, H., DHEILLY, N. M., DI CICCO, E., DI PAOLA, N., DI SERIO, F., DIETZGEN, R. G., DIGIARO, M., DOLNIK, O., DREBOT, M. A., DREXLER, J. F., DUNDON, W. G., DUPREX, W. P., DURRWALD, R., DYE, J. M., EASTON, A. J., EBIHARA, H., ELBEAINO, T., ERGUNAY, K., FERGUSON, H. W., FOOKS, A. R., FORGIA, M., FORMENTY, P. B. H., FRANOVA, J., FREITAS-ASTUA, J., FU, J., FURL, S., GAGO-ZACHERT, S., GAO, G. F., GARCIA, M. L., GARCIA-SASTRE, A., GARRISON, A. R., GASKIN, T., GONZALEZ, J. J., GRIFFITHS, A., GOLDBERG, T. L., GROSCHUP, M. H., GUNTHER, S., HALL, R. A., HAMMOND, J., HAN, T., HEPOJOKI, J., HEWSON, R., HONG, J., HONG, N., HONGO, S., HORIE, M., HU, J. S., HU, T., HUGHES, H. R., HUTTNER, F., et al. 2021. 2021 Taxonomic update of phylum Negarnaviricota (Riboviria:Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol, 166, 3513-3566.

    14. LARSON, R. A., DAI, D., HOSACK, V. T., TAN, Y., BOLKEN, T. C., HRUBY, D. E. & AMBERG, S. M. 2008. Identification of a broad-spectrum arenavirus entry inhibitor. J Virol, 82, 10768-75.

    15. LENZ, O., TER MEULEN, J., KLENK, H. D., SEIDAH, N. G. & GARTEN, W. 2001. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A, 98, 12701-5.

    16. LIU, Y., GUO, J., CAO, J., ZHANG, G., JIA, X., WANG, P., XIAO, G. & WANG, W. 2021a. Screening of Botanical Drugs against Lassa Virus Entry. J Virol, 95, e02429-20.

    17. LIU, Y., GUO, J., CAO, J., ZHANG, G., JIA, X., WANG, P., XIAO, G. & WANG, W. 2021b. Screening of Botanical Drugs against Lassa Virus Entry. J Virol, 95, e02429-2.

    18. LO IACONO, G., CUNNINGHAM, A. A., FICHET-CALVET, E., GARRY, R. F., GRANT, D. S., KHAN, S. H., LEACH, M., MOSES, L. M., SCHIEFFELIN, J. S., SHAFFER, J. G., WEBB, C. T. & WOOD, J. L. 2015. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission:the case of lassa fever. PLoS Negl Trop Dis, 9, e3398.

    19. LUKASHEVICH, I. S. & TORRE, J. C. 2021. Special Issue "Arenaviruses 2020". Viruses, 13, 13, 703.

    20. MCCORMICK, J. B., WEBB, P. A., KREBS, J. W., JOHNSON, K. M. & SMITH, E. S. 1987. A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis, 155, 437-44.

    21. NUNBERG, J. H. & YORK, J. 2012. The curious case of arenavirus entry, and its inhibition. Viruses, 4, 83-101.

    22. ROBINSON, J. E., HASTIE, K. M., CROSS, R. W., YENNI, R. E., ELLIOTT, D. H., ROUELLE, J. A., KANNADKA, C. B., SMIRA, A. A., GARRY, C. E., BRADLEY, B. T., YU, H., SHAFFER, J. G., BOISEN, M. L., HARTNETT, J. N., ZANDONATTI, M. A., ROWLAND, M. M., HEINRICH, M. L., MARTINEZ-SOBRIDO, L., CHENG, B., DE LA TORRE, J. C., ANDERSEN, K. G., GOBA, A., MOMOH, M., FULLAH, M., GBAKIE, M., KANNEH, L., KOROMA, V. J., FONNIE, R., JALLOH, S. C., KARGBO, B., VANDI, M. A., GBETUWA, M., IKPONMWOSA, O., ASOGUN, D. A., OKOKHERE, P. O., FOLLARIN, O. A., SCHIEFFELIN, J. S., PITTS, K. R., GEISBERT, J. B., KULAKOSKI, P. C., WILSON, R. B., HAPPI, C. T., SABETI, P. C., GEVAO, S. M., KHAN, S. H., GRANT, D. S., GEISBERT, T. W., SAPHIRE, E. O., BRANCO, L. M. & GARRY, R. F. 2016. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat Commun, 7, 11544.

    23. SCHöN, K., LEPENIES, B. & GOYETTE-DESJARDINS, G. 2021. Impact of Protein Glycosylation on the Design of Viral Vaccines. Adv Biochem Eng Biotechnol, 175, 319-354.

    24. SOMMERSTEIN, R., FLATZ, L., REMY, M. M., MALINGE, P., MAGISTRELLI, G., FISCHER, N., SAHIN, M., BERGTHALER, A., IGONET, S., TER MEULEN, J., RIGO, D., MEDA, P., RABAH, N., COUTARD, B., BOWDEN, T. A., LAMBERT, P. H., SIEGRIST, C. A. & PINSCHEWER, D. D. 2015. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection. PLoS Pathog, 11, e1005276.

    25. WANG, P., LIU, Y., ZHANG, G., WANG, S., GUO, J., CAO, J., JIA, X., ZHANG, L., XIAO, G. & WANG, W. 2018a. Screening and Identification of Lassa Virus Entry Inhibitors from an FDA-Approved Drug Library. J Virol, 92, e00954-18.

    26. WANG, P., LIU, Y., ZHANG, G., WANG, S., GUO, J., CAO, J., JIA, X., ZHANG, L., XIAO, G. & WANG, W. 2018b. Screening and Identification of Lassa Virus Entry Inhibitors from an FDA-Approved Drugs Library. J Virol, 92, e00954-18.

    27. WANG, W., ZHOU, Z., ZHANG, L., WANG, S. & XIAO, G. 2016. Structure-function relationship of the mammarenavirus envelope glycoprotein. Virol Sin, 31, 380-394.

    28. WATANABE, Y., BOWDEN, T. A., WILSON, I. A. & CRISPIN, M. 2019. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj, 1863, 1480-1497.

    29. WATANABE, Y., RAGHWANI, J., ALLEN, J. D., SEABRIGHT, G. E., LI, S., MOSER, F., HUISKONEN, J. T., STRECKER, T., BOWDEN, T. A. & CRISPIN, M. 2018a. Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proc Natl Acad Sci U S A, 115, 7320-7325.

    30. WATANABE, Y., RAGHWANI, J., ALLEN, J. D., SEABRIGHT, G. E., LI, S., MOSER, F., HUISKONEN, J. T., STRECKER, T., BOWDEN, T. A. & CRISPIN, M. 2018b. Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proc Natl Acad Sci U S A, 115, 7320-7325.

    31. ZHU, X., LIU, Y., GUO, J., CAO, J., WANG, Z., XIAO, G. & WANG, W. 2021. Effects of N-Linked Glycan on Lassa Virus Envelope Glycoprotein Cleavage, Infectivity, and Immune Response. Virol Sin, 36, 774-783.

  • 加载中
  • 10.1016j.virs.2023.04.003-ESM1.docx
    10.1016j.virs.2023.04.003-ESM2.mp4
    10.1016j.virs.2023.04.003-ESM3.mp4

Article Metrics

Article views(2058) PDF downloads(12) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Deletion of the first glycosylation site promotes Lassa virus glycoprotein-mediated membrane fusion

      Corresponding author: Wei Wang, wangwei@wh.iov.cn
    • a. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China;
    • b. University of the Chinese Academy of Sciences, Beijing, 100049, China;
    • c. College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China

    Abstract: The Lassa virus (LASV) is endemic in West Africa and causes severe hemorrhagic Lassa fever in humans. The glycoprotein complex (GPC) of LASV is highly glycosylation-modified, with 11 N-glycosylation sites. All 11 N-linked glycan chains play critical roles in GPC cleavage, folding, receptor binding, membrane fusion, and immune evasion. In this study, we focused on the first glycosylation site because its deletion mutant (N79Q) results in an unexpected enhanced membrane fusion, whereas it exerts little effect on GPC expression, cleavage, and receptor binding. Meanwhile, the pseudotype virus bearing GPCN79Q was more sensitive to the neutralizing antibody 37.7H and was attenuated in virulence. Exploring the biological functions of the key glycosylation site on LASV GPC will help elucidate the mechanism of LASV infection and provide strategies for the development of attenuated vaccines against LASV infection.

    Reference (31) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return